Preview

Agricultural Machinery and Technologies

Advanced search

Flax Harvesting Technologies for Flax Harvesting Machines

https://doi.org/10.22314/2073-7599-2023-17-1-19-24

Abstract

The technology of flax harvesting  depends  on input impacts, including: flax harvester qualitative characteristics; working body parameters; indicators of working conditions; intervening variables reflecting the dynamic properties of the working bodies and the dynamics of the flax flow input. (Research purpose) To establish patterns and the degree of correlation between the qualitative operation indicators (pulling and deseeding quality, flax line stretching); design parameters; machine dynamic properties and harvesting conditions (height and density of flax stem, field surface, thickness and unevenness of flax straw, etc.). (Materials and methods) Based on system analysis, mathematical models of the technological process of flax harvesting were developed. Information models were introduced for examining the main flax harvesters. (Results and discussion) The paper shows that the most typical indicators of the flax harvester working conditions are the flax stem height l(t), centimeters; the seed pod area a(t), centimeters; and field surface roughness z(t), centimeters. It is found that the quality of operation is determined by the deseeding quality, percentages; the flax straw stretching, times; the location of its apical and root parts, centimeters. The estimated indicators are as follows: the pulling height h(t), centimeters, the vibrations of the combine in the longitudinal-vertical plane Q(t), degrees, the location of the apical part of the flax flaw in front of the stripper. (Conclusions) A hydraulic device was developed to adjust the pulling height from 10 to 40 centimeters, depending on the flax stem. An important reserve for increasing the deseeding quality is the change in the width of the deseeding zone of the Vk harvester, centimeters. For this purpose, a mechanism was created for moving the deseeder against the clamping conveyor, depending on the flax stem height l(t), centimeters.

About the Authors

V. G. Chernikov
Federal Research Center for Bast Fiber Crops
Russian Federation

Viktor G. Chernikov - Dr.Sc.(Eng.), professor, chief researcher.

Tver



R. A. Rostovtsev
Federal Research Center for Bast Fiber Crops
Russian Federation

Roman A. Rostovtsev - Dr.Sc.(Eng.), chief researcher, director.

Tver



V. Yu. Romanenko
Federal Research Center for Bast Fiber Crops
Russian Federation

Vladislav Yu. Romanenko - Ph.D.(Eng.), leading researcher.

Tver



References

1. Chernikov V.G. Mashiny dlya uborki l'na (konstruktsiya, teoriya i raschet): monografiya [Flax harvesting machines (design, theory and calculation): monograph.]. Moscow: Infra-M. 1999. 209 (In Russian).

2. Chernikov V.G., Rostovtsev R.A., Romanenko V.Yu., et al. Vliyanie kharakteristik usloviy raboty na nadezhnost' i tochnost' vypolneniya tekhnologicheskikh protsessov l'nouborochnymi mashinami [Influence of the working conditions on the reliability and accuracy of flax harvester technological processes]. Mekhanizatsiya i elektrifikatsiya sel'skogo khozyaystva. 2016. N4. 9-11 (In Russian).

3. Ponazhev V.P. Usovershenstvovannye tekhnologii semenovodstva v l'novodstve: monografiya [Improved technologies of seed production in flax growing: monograph.]. Tver': Tverskoy gosudarstvennyy universitet. 2006. 230 (In Russian).

4. Shilo I.N., Dashkov V.N., Kolos V.A. Resursosberegayushchie tekhnologii sel'skokhozyaystvennogo proizvodstva: monografiya [Resource-saving technologies of agricultural production: monograph.]. Minsk: Belorusskiy gosudarstvennyy agrarnyy tekhnicheskiy universitet. 2003. 183 (In Russian).

5. Lur'e A.B. Statisticheskaya dinamika sel'skokhozyaystvennykh agregatov [Statistical dynamics of agricultural units.]. Moscow: Kolos. 1981. 282 (In Russian).

6. Lur'e A.B., Chernikov V.G., Ozerov V.G. Tekhnologicheskie osnovy avtomatizatsii l'nouborochnykh mashin [Technological fundamentals of flax harvester automation]. Traktory i sel'skokhozyaystvennye mashiny. 1974. N5. 24-25 (In Russian).

7. Zintsov A.N. Nauchnye osnovy otdeleniya semennoy chasti urozhaya ot stebley pri razdel'noy uborke l'na-dolguntsa [Scientific fundamentals for separating the crop seed part from the stems during separate harvesting of fiber flax]. Karavaevo: Kostromskaya GSKHA. 2019. 118 (In Russian).

8. Klenin N.I., Sakun V.A. Sel'skokhozyaystvennye i meliorativnye mashiny [Agricultural and land reclamation machines]. Moscow: Kolos. 1994. 751 (In Russian).

9. Pozdnyakov B.A. Aktual'nye napravleniya sovershenstvovaniya sistemy mashin dlya uborki l'na-dolguntsa [Up-to-date areas of improving the system of machines for harvesting fiber flax]. Tekhnika i oborudovanie dlya sela. 2019. N8(266). 2-6 (In Russian).

10. Rostovtsev R.A., Chernikov V.G., Ushchapovskiy I.V., et al. Osnovnye problemy nauchnogo obespecheniya l'novodstva [The main problems of scientific support of flax growing]. Sel'skokhozyaystvennye mashiny i tekhnologii. 2020. Vol. 14. N3. 45-52 (In Russian).

11. Chernikov V.G., Porfir'ev S.G., Rostovtsev R.A. Ochesyvayushchie apparaty l'nouborochnykh mashin [Strippers for flax harvesters]. Moscow: Izdatel'stvo VIM. 2004. 237 (In Russian).

12. Kovalev M.M., Galkin A.V. Analiz protsessa ochesa stebley barabanom s postupatel'no-krugovym dvizheniem grebney [Analysis of the stalk stripping process by a drum with progressive-circular motion of the ridges]. Dostizheniya nauki i tekhniki APK. 2006. N4. 25-27 (In Russian).

13. Kovalev M.M. Apparat s postupatel'no krugovymi dvizheniyami grebney: analiz protsessa ochesa stebley [Machine with progressively circular movements of the ridges: analysis of the stalk stripping process]. Traktory i sel'skokhozyaystvennye mashiny. 1994. N1. 25-27 (In Russian).

14. Chernikov V.G. Opredelenie parametra intensivnosti otryva korobochek l'na pri rabote ochesyvayushchego ustroystva [Determination of parameter of intensity of flax balls separation during comb deseeder operation]. Sel'skokhozyaystvennye mashiny i tekhnologii. 2017. N4. 20-23 (In Russian).

15. Rodionova L.V. Sravnitel'nyy analiz ochesyvayushchikh ustroystv poli- i monoshchelevogo tipa [Comparative analysis of stripping devices of poly- and mono-slit type]. Traktory i sel'skokhozyaystvennye mashiny. 1986. N5. 31-33 (In Russian).

16. Rodionova A.E. Tekhnologiya vyrashchivaniya i pervichnoy pererabotki l'na-dolguntsa [Technology of cultivation and primary processing of fiber flax]. Tver': Agrosfera. 2008. 442 (In Russian).

17. Aldoshin N.V., Lylin M.A., Mosyakov M.A. Uborka zernobobovykh kul'tur metodom ochesa [Leguminous harvesting by the stripping method]. Dal'nevostochnyy agrarnyy vestnik. 2017. N1(41). 67-74 (In Russian).

18. Lobachevskiy Ya.P., Tsench Yu.S., Beylis V.M. Sozdanie i razvitie sistem mashin i tekhnologiy dlya kompleksnoy mekhanizatsii tekhnologicheskikh protsessov v rastenievodstve [Creation and development of machine systems and technologies for complex mechanization of technological processes in crop production]. Istoriya nauki i tekhniki. 2019. N12. 46-55 (In Russian).

19. Godzhaev Z.D., Shevtsov V.G., Lavrov A.V., Tsench Yu.S., Zubina V.A. Strategiya mashinno-tekhnologicheskoy modernizatsii sel'skogo khozyaystva Rossii do 2030 goda (Prognoz) [Strategy of machine-technological modernization of agriculture in Russia until 2030 (Forecast)]. Tekhnicheskiy servis mashin. 2019. N4(137). 220-229 (In Russian).

20. Mazitov N.K., Shogenov Yu. Kh., Tsench Yu.S. Sel’skokhozyaystvennaya tekhnika: resheniya i perspektivy [Agricultural machinery: solutions and prospects]. Vestnik VIESH. 2018. N3(32). 94-100 (In Russian).

21. Zhalnin E.V., Tsench Yu.S., P'yanov V.S. Metodika analiza tekhnicheskogo urovnya zernouborochnykh kombaynov po funktsional'nym i konstruktivnym parametram [Methods of analysis of the technical level of combine harvesters on functional and structural parameters]. Sel'skokhozyaystvennye mashiny i tekhnologii. 2018. Vol. 12. N2. 4-8 (In Russian).


Review

For citations:


Chernikov V.G., Rostovtsev R.A., Romanenko V.Yu. Flax Harvesting Technologies for Flax Harvesting Machines. Agricultural Machinery and Technologies. 2023;17(1):19-24. (In Russ.) https://doi.org/10.22314/2073-7599-2023-17-1-19-24

Views: 424


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)