Нелинейное управление двухосевой платформой
https://doi.org/10.22314/2073-7599-2025-19-3-51-58
EDN: GYGLJX
Аннотация
Отметили, что задачи повышения точности управления роботизированными платформами весьма актуальны, особенно при наличии механических нелинейностей. Одну из наиболее распространенных проблем представляет люфт, который приводит к отклонению платформы от прямолинейной траектории во время движения. Это негативно сказывается на общей стабильности и точности системы управления. (Цель исследования) Разработка системы управления двухосевой платформой с двумя степенями подвижности, которая эффективно учитывает и компенсирует влияние механического люфта. Для достижения этого была создана система, способная поддерживать стабильность движения платформы при минимизации последствий люфта. (Материалы и методы) В ходе исследований разработана математическая модель системы управления, в которой люфт представлен в виде гистерезиса. Были исследованы различные методы компенсации люфта. В качестве управляющих алгоритмов применены линейные контроллеры, такие как ПИД-регулятор и регулятор фазы сдвига, а также алгоритмы управления на основе нечеткой логики (Fuzzy Logic Controller). Модель системы и алгоритмы управления исследовались с помощью программного пакета MATLAB и библиотеки Simulink. (Результаты и обсуждение) Проведенное моделирование продемонстрировало, что разработанные методы управления эффективно компенсируют механический люфт, обеспечивая более стабильное и точное движение платформы. Этот результат подтвержден как в идеальных, так и в реальных условиях эксплуатации системы. (Выводы) Разработанная система управления позволяет существенно улучшить точность и устойчивость платформы, что открывает новые возможности для ее применения в различных робототехнических системах.
Об авторах
Р. СаадРоссия
Рихам Саад, инженер, аспирант
Москва
А. Ахмад
Россия
Авс Ахмад, младший научный сотрудник, старший преподаватель
Москва
М. Исса
Россия
Мохаммад Исса, магистрант
Москва
Х. Халил
Россия
Хани Халил, инженер, магистрант
Москва
И. Г. Смирнов
Россия
Игорь Геннадьевич Смирнов, доктор технических наук, доцент, член-корреспондент Российской академии наук, главный научный сотрудник
Москва
Список литературы
1. Измайлов А.Ю., Лобачевский Я.П., Дорохов А.С. и др. Современные технологии и техника для сельского хозяйства – тенденции выставки Agritechnika 2019 // Тракторы и сельхозмашины. 2020. N6. 28-40. DOI: 10.31992/0321-4443-2020-6-28-40.
2. Шутенко А.В., Хорт Д.О. Определение геометрических параметров струи воды в зависимости от вида форсунки и режима работы струи // Инженерные технологии и системы. 2024. 34(1). 88-100. DOI: 10.15507/2658-4123.034.202401.088-100
3. Smith J., Brown L. Advances in precision gear design: A review. Journal of Mechanical Engineering Science. 2020. 234(10). 1234-1245. DOI: 10.1177/0954406220901234.
4. Karba B. Developing a software for proper assembly of planetary gearbox components with low backlash. Master’s thesis. Gaziantep University. 2021. DOI: 10.13140/RG.2.2.16503.55209.
5. Filippov R., Khort D. Multifunctional robotic device with intelligent positioning system. E3S Web. 2024. 493. 01003. DOI: 10.1051/e3sconf/202449301003.
6. Kutyrev A.I., Khort D.O., Smirnov I.G. et al. Robotic device for identifying and picking apples. Proceedings of IEEE Technology. 2022. 415-420. DOI: 10.1109/PICST57299.2022.10238646.
7. Lin W., Qian C. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems. 2018. 11(6). 1105–1120. DOI: 10.3934/dcdss.2018063.
8. Serkies P., Szabat, K. Model predictive control of the twomass drive system with backlash and friction. ISA Transactions. 2019. 93. 1-12. DOI: 10.1016/j.isatra.2019.02.005.
9. Zhang Y., Wang Y. Backlash compensation in servo systems using adaptive control. IEEE Transactions on Industrial Electronics. 2019. 66(5). 3983-3992. DOI: 10.1109/TIE.2018.2856205.
10. Vered Y., Elliott S. J. Robust internal model control approach for position control of systems with sandwiched backlash. ISA Transactions. 2023. DOI: 10.48550/arXiv.2307.06030.
11. Wang L., Chen X. Adaptive fuzzy control for nonlinear systems with backlash-like hysteresis. IEEE Transactions on Fuzzy Systems. 2018. 26(3). 1312-1323. DOI: 10.1109/TFUZZ.2017.2737021.
12. Lima T.A., Madeira D. de S., Viana V.V., Oliveira R.C.L.F. Static output feedback stabilization for uncertain relative degree nonlinear systems with input saturation. Systems & Control Letters. 2022. 168. DOI: 10.1016/j.sysconle.2022.105359.
13. Zhang Y., Li X. Discrete-time adaptive fuzzy finite-time tracking control for nonlinear systems with uncertainties. IEEE Transactions on Fuzzy Systems. 2023.
14. Li X., Zhang H. Position control of PMDC motors with backlash compensation using adaptive control. IEEE Transactions on Industrial Electronics. 2019. 66(12). 9462-9471. DOI: 10.1109/TIE.2018.2886789.
15. Zuo Q., Wang B., Chen J., Dong H. Model predictive control of aero-mechanical actuators with consideration of gear backlash and friction compensation. Electronics. 2024. 13(20). 4021. DOI: 10.3390/electronics13204021.
16. Smith, J., Brown, L. (2020). Advances in precision gear design: A review. Journal of Mechanical Engineering Science. 2020. 234(10). 1234-1245. DOI: 10.1177/0954406220901234.
Рецензия
Для цитирования:
Саад Р., Ахмад А., Исса М., Халил Х., Смирнов И.Г. Нелинейное управление двухосевой платформой. Сельскохозяйственные машины и технологии. 2025;19(3):51-58. https://doi.org/10.22314/2073-7599-2025-19-3-51-58. EDN: GYGLJX
For citation:
Saad Р., Ahmad A., Issa M., KhalilI H., Smirnov I.G. Nonlinear Control of Dual-Axis Platform. Agricultural Machinery and Technologies. 2025;19(3):51-58. (In Russ.) https://doi.org/10.22314/2073-7599-2025-19-3-51-58. EDN: GYGLJX