Preview

Agricultural Machinery and Technologies

Advanced search

Distribution of Heterogeneous, Highly Impure Soy Material in a Deep Air Channel

https://doi.org/10.22314/2073-7599-2023-17-4-42-48

EDN: BCAUPY

Abstract

The paper highlights a lack of machines and equipment capable of cleaning highly impure soybean material efficiently and productively. Most of the existing grain cleaning machines are designed for the materials conforming to GOST 17109-88 that specifies weed and oilseed impurity contents of 2 and 6 percent, respectively. In reality, a typical soybean post-harvest waste often contains 20 to 60 percent of material unsuitable for extracting raw protein, that makes this type of material completely non–separable for this type of machine. (Research purpose) The research aims to determine the optimal efficiency of separating heterogeneous bulk mixtures in a vertically ascending air channel. (Materials and methods) To accomplish this, the authors employed a rotary batch classifier RBK 30 and a prototype sample of a precision air classifier PAC with column air flow accelerators. The paper defines impurity separation completeness and soybean waste separation efficiency in a novel pneumatic classifier, considering the accelerator thickness and the height above the processed material. (Results and discussion) The findings reveal that traditional pneumatic channels achieve no more than 20 percent of separation efficiency for highly impure soybean material, while the precision air classifier demonstrates approximately a 45 percent separation. (Conclusions) Typical air flow machines struggle with high impurity of material. The separation efficiency of highly impure material can be enhanced by equalizing the air flow velocity inside and above the layer of the separated material and installing a core air flow accelerator. The study indicates that the material being processed can be separated by air flow, provided a specialized pneumatic separation channel is used. Due to the ratio of the core accelerator height and the height above the material, the air flow velocity inside and above the separated layer is equalized.

About the Authors

M. N. Moskovskiy
Federal Scientific Agroengineering Center VIM
Russian Federation

Maksim N. Moskovskiy, Dr.Sc.(Eng.), chief researcher

Moscow 



S. I. Borzenko
Federal Scientific Agroengineering Center VIM
Russian Federation

Sergey I. Borzenko, junior researcher

Moscow 



References

1. Lachuga Yu.F., Izmailov A.Yu., Zyulin A.N. Razrabotka i vnedrenie vysokoeffektivnykh, resurso- i energosberegayushchikh tekhnologiy i tekhnicheskikh sredst v posleuborochnoy obrabotke zerna i podgotovke semyan [Development and implementation of highly efficient, resource-saving technologies and technical means of post-harvest grain processing and seed preparation]. Sel’skokhozyaystvennye mashiny i tekhnologii. 2009. N1. 2-9 (In Russian). EDN: JXTJCH.

2. Zotikov V.I., Naumkina T.S., Sidorenko V.S. Proizvodstvo zernobobovykh i krupyanykh kultur v Rossii: sostoyanie, problemy, perspektivy [Legumes and groat crops production in Russia: state, problems, perspectives]. Zemledelie. 2015. N4. 3-5 (In Russian). EDN: TZVJZF.

3. Panasiewicz M., Mazur J., Zawi´slak K., et al.The process of separation of husked soybean in oblique airflow. Sustainability. 2020. N12. 7566 (In English). DOI: 10.3390/su12187566.

4. Khamuev V.G., Moskovskiy M.N., Borzenko S.I., Gerasimenko S.A. Issledovanie raspredeleniya skorostey vozdushnogo potoka v modeli aspiratsionnogo kanala dlya vysokozasorennoysoevoy produktsii [The spreading of air flow velocities in the aspiration channel model for highly clogged soy products]. Elektrotekhnologii i elektrooborudovanie v APK. 2022. Vol. 69. N2(47). 86-90 (In Russian). DOI: 10.22314/2658-4859-2022-69-2-86-90. EDN: EZXRPO.

5. Khamuev V.G., Moskovskiy M.N., Borzenko S.I. Laboratornye issledovaniya opytnogo obraztsa gravitatsionno-pnevmaticheskogo zerno-semyaochistitelya [Laboratory studies of a prototype of a gravity-pneumatic grain-seed cleaner]. Inzhenernyyvestnik Dona. 2018. N1(48). 89 (In Russian). EDN: XSMPQL.

6. Zyulin A.N., Khamuyev V.G.Teoreticheskoe issledovanie pnevmoseparacii zernovogo materiala v vertikalno voskhodyashchem potoke [Theoretical research of pneumatic separation of grain material in the vertical raising air flow]. Tekhnika v sel’skomhozyajstve. 2008. N2. 3-6 (In Russian).

7. Moskovskiy M.N., Khamuev V.G.,Gerasimenko S.A., Borzenko S.I., et al. Proizvodstvennye ispytaniya zernoochistitel’noy mashiny s programmno-apparatnym upravleniem v sostavetekhnologicheskoylinii [Production tests of a grain-cleaning machine with software and hardware control as part of a technological line]. Elektrotekhnologii i elektrooborudovanie v APK. 2021. Vol. 68. N4(45). 112-117 (In Russian). DOI: 10.22-314/2658-4859-2021-68-4-112-117. EDN: LCMBQU.

8. MoskovskiyM.N., KhamuevV.G.,BorzenkoS.I., et al. Tekhnologicheskiy aspect razdeleniya semyan kukuruzy po indeksu formy [The technological aspect of the separation of corn seeds by shape index]. Estestvennye i tekhnicheskie nauki. 2019. N11 (137). 182-184 (In Russian). EDN: SQBKBZ.

9. Doshi J.S., Patel V.B., Patel J.B., Patel J.A. Quantification of quality improvement in wheat seed processing. Journal of Agricultural Engineering. 2013. Vol. 50. N4 (In English).

10. Kroulík M., Hůla J., Rybka A., Honzík I. Pneumatic conveying characteristics of seeds in a vertical ascending airstream. Research in Agricultural Engineering. 2016. 62. 56-63 (In English). DOI: 10.17221/32/2014-RAE.

11. Łukaszuk J., Molenda M., Horabik J., et al. Airflow resistance of wheat bedding as influenced by the filling method. Research in Agricultural Engineering. 2008. 54. 50-57 (In English). DOI: 10.17221/8/2008-RAE.

12. Burkov A., Glushkov A., Lazykin V., Mokiev V. Substantiation of the main design parameters of the separation chamber of the pneumatic separator using various methods for calculating particle trajectories in the pneumoseparating channel. Agricultural Science Euro-North-East. 2022. 23. 402- 410 (In English). DOI: 10.30766/2072-9081.2022.23.3.402-410.

13. Badretdinov I.D., Mudarisov S.G. Nauchnoe obosnovanie i sovershenstvovanie pnevmaticheskikh sistem sel’skokhozyaystvennykh mashin na osnove opisaniya tekhnologicheskogo processa [Scientific justification and improvement of pneumatic systems for agricultural machines based on the simulation of technological process]. Vestnik NGIEI. 2019.N9(100). 12 (In Russian).

14. Khamuev V.G. Raspredelenie skorostey vozdushnogo potoka v glubokom pnevmosepariruyushchem kanale [Distribution of air flow velocities in a deep pneumatic separating channel]. Sel’skokhozyaystvennye mashiny i tekhnologii. 2015. N4. 12-15 (In Russian).


Review

For citations:


Moskovskiy M.N., Borzenko S.I. Distribution of Heterogeneous, Highly Impure Soy Material in a Deep Air Channel. Agricultural Machinery and Technologies. 2023;17(4):42-48. (In Russ.) https://doi.org/10.22314/2073-7599-2023-17-4-42-48. EDN: BCAUPY

Views: 282


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)