Preview

Agricultural Machinery and Technologies

Advanced search

Steam Generator for Hydrothermal Treatment of Agricultural Equipment

https://doi.org/10.22314/2073-7599-2023-17-2-76-81

Abstract

The paper highlights the importance of keeping the working surfaces of agricultural machinery clean and describes the existing modern equipment for its cleaning. (Research purpose) To develop a biofuel system for cleaning machines, equipment and tools in the field. It is proposed to apply a mobile steam generator using wood, chocks, straw and other agricultural waste as a fuel and capable of providing pressure of 5 kilograms per square centimeter and a temperature of 150 degrees Celsius. (Materials and methods) The paper describes the algorithm of the steam generator operation and presents its main technical characteristics and the design diagram. Theoretical calculations of the air consumption for the constant and adjustable air supply systems are provided. (Results and discussion) It has been established that one load of 8 kilograms of biofuel and 6 liters of water ensures 20-25 minutes of intense steam production. The steam generator was equipped with two systems for supplying air to the furnace, a safety valve for dumping steam at excess pressure. The boiler has a built-in superheater that ensures the necessary steam characteristics at the boiler outlet. (Conclusions) The developed steam generator reveals the following advantages: mobility, use of biofuel, a 20-25 minutes continuous supply of superheated steam at one load. The new unit is designed for long-term operation and it is capable of not only defrosting and cleaning a frozen manure conveyor, a manure trolley, a spreader, and loader working bodies, but also warming up larger agricultural machinery. It is also suitable for sanitizing seed harvesting and livestock equipment in the field.

About the Authors

V. A. Gusarov
Federal Scientific Agroengineering Center VIM
Russian Federation

Valentin A. Gusarov - Dr.Sc.(Eng.), chief researcher

Moscow



L. Yu. Yuferev
Federal Scientific Agroengineering Center VIM
Russian Federation

Leonid Yu. Yuferev - Dr.Sc.(Eng.), chief researcher

Moscow



References

1. Kravchenko I.N., Amelin S.S., Kurmenev D.V., Velichko S.A., Preobrazhenskaya E.V., Lut’yanov A.V. Matematicheskaya model’ protsessa formirovaniya rabochego potoka termodinamicheskogo abrazivostruynogo instrumenta dlya obrabotki poverkhnostey [Mathematical model of the process of forming the working flow of a thermodynamic abrasive jet tool for surface treatment]. Vestnik mashinostroeniya. 2022. N4. 64-68 (In Russian).

2. Pavlenko A., Koshlak H. Formation of the steam phase in superheated liquids in the state of metastable equilibrium. Eas­tern-European Journal of Enterprise Technologies. 2017. Vol. 5. N5(89). 35-42 (In English).

3. Egorov S.A., Korobov D.V., Sviridov I.A., Fomin Yu.G. Konstruktsiya parogeneratora [The steam generator design]. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil’noy promyshlennosti. 2016. N1(361). 195-197 (In Russian).

4. Lyashenko A.L. Matematicheskaya model’ teplovykh pro­tsessov parovogo kotla teploelektrostantsii [Mathematical model of thermal processes in a heat-electric power station steam boiler]. Izvestiya YUFU. Tekhnicheskie nauki. 2018. N5(199). 100-110 (In Russian).

5. Makarov A.N., Okuneva V.V., Galicheva M.K. Vliyanie dliny fakela na teplovoy potok na gorelochnoe ustroystvo [The effect of the torch length on the heat flow to the burner device]. Elektricheskie stantsii. 2017. N6(1031). 19-23 (In Russian).

6. Plevako A.P. Possibility of using of thermal pumps at thermal power plants and heat boiler stations. Vestnik Innovatsionnogo Evraziyskogo universiteta. 2019. N2(74). 62-66 (In English).

7. Filimonova A.A., Chichirov A.A., Chichirova N.D., Batalova A.A. Spektroskopicheskoe issledovanie povedeniya organicheskikh primesey v tekhnologicheskikh vodakh teplovykh elektrostantsiy [Spectroscopic study of the organic impurities behaviour in thermal power plants technological waters]. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. 2022. Vol. 14. N3(55). 3-12 (In Russian).

8. Neverov V.V., Klevtsov P.N., Lebedev S.V. Defektoskopiya svarnykh soedineniy parovykh kotlov vysokogo davleniya i prognozirovanie ostatochnogo resursa [Defectoscopy of welded joints of highpressure steam generators and forecasting of а residual resource]. Vestnik Lipetskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. N3(37). 51-57 (In Russian).

9. Bogomolov O.V. Tekhnologiya ochistki rezervuarov dlya khraneniya nefteproduktov s primeneniem parogeneratorov Interblok [Technology for storing petroleum products tanks cleaning using «Interbloсk» steam generators]. Burenie i neft’. 2022. N11. 14 (In Russian).

10. Tashakor S., Afsari A., Hashemi-Tilehnoee M. Sensitivity analysis of thermal-hydraulic parameters to study the corrosion intensity in nuclear power plant steam generators. Nuclear Engineering and Technology. 2019. Vol. 51. N2. 394401 (In English).

11. Bersano A., Falcone N., Bertani C., De Salve M., Panella B. Conceptual design of a bayonet tube steam generator with heat transfer enhancement using a helical coiled downcomer. Progress in Nuclear Energy. 2018. Vol. 108. 243-252 (In English).

12. Egorov M.Yu. Vertikal’nye parogeneratory dlya AES s VVER [Vertical steam generators for VVER NPPS]. Izvestiya vysshikh uchebnykh zavedeniy. Yadernaya energetika. 2018. N3. 88-99 (In Russian).


Review

For citations:


Gusarov V.A., Yuferev L.Yu. Steam Generator for Hydrothermal Treatment of Agricultural Equipment. Agricultural Machinery and Technologies. 2023;17(2):76-81. (In Russ.) https://doi.org/10.22314/2073-7599-2023-17-2-76-81

Views: 246


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)