Preview

Agricultural Machinery and Technologies

Advanced search

Traction Calculation for Modular Energotechnological Unit Given Kinematic Mismatch of Driving Axles

https://doi.org/10.22314/2073-7599-2022-16-2-30-36

Abstract

The power of the engine of energy-saturated tractors often proves not to be fully used. One of the solutions to this problem might be the use of the unit technological part as an active coupling weight. To implement it, an energotechnological modular unit was created.

Research purpose The purpose of the study is to determine the traction efficiency of a block-modular energotechnological unit given a kinematic discrepancy between the tractor wheels.

Materials and methods The system of equilibrium equations for the transport-technological module being free-attached to the energy module is presented as the sum of forces projections on the axis. The tangent thrust force and the rolling resistance force of each axle of the energy vehicle were expressed through the corresponding normal soil reactions. When calculating multiaxle running systems, it was taken into account that the rolling resistance coefficient depends on the number of wheel passes along one trace and the degree of soil deformation by previous passes. Normal reactions of the soil to the energy module supports have been determined by considering the modular energotechnological unit as a whole, equating to zero the sum of the forces projection on the OZ axis and the sum of the moments at the point of contact between the energy module’s front wheels and the soil.

Results and discussion The influence of the kinematic mismatch between the third axle and the second one on the undercarriage efficiency was investigated. Analyzing the dependence of the running system efficiency on the kinematic mismatch of the first and third axles at the traction of 30 kilonewtons, the extremes of all the dependencies at the kinematic mismatch between the third bridge and the second one different unit were detected.

Conclusions It has been revealed that the change in the efficiency of the chassis system of the modular energotechnological unit depends on the kinematic mismatch between the third axle and the second one at a predetermined kinematic mismatch between the first axle and the second axle, which is a structural feature for 4K4 wheeled tractors. The excess in the values of running system efficiency equals 1.04-1.06 if the constructive kinematic mismatch between the third bridge and the second one is within 1.06-1.08.

About the Authors

A. V. Lavrov
Federal Scientific Agroengineering Center VIM
Russian Federation

Alexander V. Lavrov - Ph.D.(Eng.).

Moscow



V. А. Voronin
Bryansk State Agrarian University
Russian Federation

Viktor A. Voronin - Ph.D. student (Eng.).

Bryansk



M. V. Sidorov
Kaluga branch of Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Maxim V. Sidorov - Ph.D.(Eng.).

Kaluga



I. A. Pekhalskiy
Federal Scientific Agroengineering Center VIM
Russian Federation

Igor A. Pekhalskiy - Ph.D.(Eng.), leading researcher.

Moscow



References

1. Izmaylov A.Yu., Kryazhkov V.M., Antyshev N.M., Elizarov V.P., Keller N.D., Lobachevskiy Ya.P., Sorokin N.T., Gurylev G.S., Savel'ev G.S., Sizov O.A., Shevtsov V.G. Kontseptsiya modernizatsii parka sel'skokhozyaystvennykh traktorov Rossii na period do 2020 goda [The concept of the agricultural tractor fleet modernization in Russia for the period up to 2020]. Moscow: VIM. 2013. 87 (In Russian).

2. Lachuga Yu.F., Izmaylov A.Yu., Lobachevskiy Ya.P., et al. Prioritetnye napravleniya nauchno-tekhnicheskogo razvi­tiya otechestvennogo traktorostroeniya [Priority directions of scientific and technical development of domestic tractor building]. Sel'skiy mekhanizator. 2021. N2. 3-5 (In Russian).

3. Shevtsov V.G., Godzhaev T.Z., Erilina E.V. Perspektivy razvitiya sel'skokhozyaystvennykh mobil'nykh energosredstv [Perspective for the development of agricultural mobile energy]. Traktory i sel'khozmashiny. 2018. N3. 25-31 (In Russian).

4. Lankenau G.F.D., Winter A.G. An engineering review of the farm tractor’s evolution to a dominant design. ASME Journal of Mechanical Design. 2018 (In English).

5. Kut'kov G.M. Energonasyshchennost' i klassifikatsiya traktorov [Energy saturation and classification of tractors]. Traktory i sel'skokhozyaystvennye mashiny. 2009. N5. 11-14 (In Russian).

6. Kut'kov G.M. Razvitie tekhnicheskoy kontseptsii traktora [The development of the technical concept of the tractor]. Traktory i sel'khozmashiny. 2019. N1. 27-35 (In Russian).

7. Lipkovich E.I., Nesmiyan A.Y., Nikitchenko S.L., et al. Agricultural tractors of the fth generation. Scientia Iranica. 2020. Vol. 27. N2. 745-756 (In English).

8. Gribov I.V., Perevozchikova N.V. Moshchnost' – osnovnoy pokazatel' dlya traktora tyagovo-energeticheskoy kontsep­tsii [Power as the main indicator for a tractor of traсtive force-and-output concept]. Tekhnika i tekhnologii APK. 2017. N5. 18-21(In Russian).

9. Solov'ev R.Yu., Cheranev S.V., Karyakin S.B., Kolomeychenko A.V., Gribov I.V. Aktual'nost' razrabotki vysokotekhnologichnykh traktorov tyagovykh klassov 0,6-2 [The relevance of developing high-tech tractors of traction classes 0.6 2]. Tekhnika i oborudovanie dlya sela. 2019. N11(269). 14-17 (In Russian).

10. Sharipov V.M., Fedotkin R.S., Kryuchkov V.A., et al. Eksperimental'naya proverka dostovernosti metodiki proektirovaniya vedushchikh koles tsevochnogo zatsepleniya s rezinoarmirovannymi gusenitsami [Experimental verification of the reliability of the method of designing driving wheels of pin gearing with rubber-reinforced caterpillars]. Izvestiya MGTU MAMI. 2017. N3(33). 76-81 (In Russian).

11. Amel'chenko P.A., Dubovik D.A., Zhukovskiy I.N. Energonasyshchennye traktory: struktura, proizvodstvo i potrebnosti APK Belarusi [Power-saturated tractors: their structure, production and needs of the belarusian agro-industrial complex]. Vestnik Belorussko-Rossiyskogo universiteta. 2020. N3(68). 5-13 (In Russian).

12. Kut'kov G.M. Potentsial'naya proizvoditel'nost' traktora [Potential productivity of the tractor]. Traktory i sel'khozma­shiny. 2017. N5. 48-52 (In Russian).

13. Kut'kov G.M., Gribov I.V., Perevozchikova N.V. Ballastirovanie sel'skokhozyaystvennykh traktorov [Ballasting of tractors]. Traktory i sel'khozmashiny. 2017. N9. 52-60 (In Russian).

14. Shutenko V.V., Perevozchikova N.V., Hort D.O. Sravnenie effektivnosti ispol'zovaniya ballastnykh gruzov i transportno-tekhnologicheskikh moduley dlya povysheniya tyagovo-stsepnykh svoystv traktora [Of the effectiveness of the use of ballast weights and transport-technological modules to enhance the traction characteristics of the tractor]. Innovatsii v sel'skom hozyaystve. 2019. N3(32). 162-168 (In Russian).

15. Sidorov V.N., Voinash S.A., Ivanov A.A., Petrov S.A. Modular-Technological Scheme for Tractors of Traction Classes 1.4. IOP Conference. Earth and Environmental Science. 2020. Vol. 666. 042048 (In English).

16. Sidorov M.V., Lavrov A.V., Voronin V.A. Modul'no-tekhnologicheskaya skhema dlya traktorov tyagovogo klassa 1,4 [Modular technological scheme for tractors of 1.4 traction class]. Elektrotekhnologii i elektrooborudovanie v APK. 2019. N4(37). 57-62 (In Russian)..

17. Sidorov V.N., Kornyushin Yu.P., Lutsenko G.M. Ukrupnennaya matematicheskaya model' modul'nogo energeticheskogo sredstva [Stocked mathematical model of modular energy means]. Elektronnyy zhurnal: nauka, tekhnika i obrazovanie. 2017. N4(16). 64-69 (In Russian).

18. Shutenko V.V., Perevozchikova N.V. Matematicheskoe mode­lirovanie i otsenka effektivnosti privodov transportno-tekhnologicheskogo modulya [Mathematical modeling and evaluation of the transport and technological module drive efficiency]. Elektrotekhnologii i elektrooborudovanie v APK. 2020. Vol. 67. N1(38). 87-92 (In Russian).

19. Shutenko V.V., Perevozchikova N.V. Sozdanie algoritma upravleniya individual'nym privodom vedushchikh koles transportno-tekhnologicheskogo modulya [Making an algorithm for controlling the individual drive of the driving wheels of a transport and technological module]. Agroinzheneriya. 2020. N5(99). 10-15 (In Russian).

20. Lavrov A.V., Sidorov M.V., Voronin V.A. Tekhnologicheskiy modul' dlya krest'yanskikh fermerskikh hozyaystv [Technology module for peasant farms]. Sel'skiy mekhanizator. 2021. N3. 5-7 (In Russian).

21. Godzhaev Z.D., Shevtsov V.G., Lavrov A.V., Tsench Yu.S., Zubina V.A. Strategiya mashinno-tekhnologicheskoy modernizatsii sel'skogo khozyaystva Rossii do 2030 goda (Prognoz) [Strategy of machine-technological modernization of agriculture in Russia until 2030 (Forecast)]. Tekhnicheskiy servis mashin. 2019. N4(137). 220-229 (In Russian).

22. Izmaylov A.Yu., Kryazhkov V.M., Antyshev N.M. Elizarov V.P., Lobachevskiy Ya.P., Sorokin N.T., Gury­lev G.S., Savel’ev G.S., Sizov O.A., Shevtsov V.G. Kon­tseptsiya modernizatsii sel’skokhozyaystvennykh traktorov i traktornogo parka Rossii na period do 2020 goda [The concept of modernization of agricultural tractors and tractor fleet of Russia for the period up to 2020]. Moscow: VIM. 2012. 56 (In Russian).


Review

For citations:


Lavrov A.V., Voronin V.А., Sidorov M.V., Pekhalskiy I.A. Traction Calculation for Modular Energotechnological Unit Given Kinematic Mismatch of Driving Axles. Agricultural Machinery and Technologies. 2022;16(2):30­-36. (In Russ.) https://doi.org/10.22314/2073-7599-2022-16-2-30-36

Views: 419


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)