Development of Interface Device for Modular Agricultural Robotic Platform
https://doi.org/10.22314/2073-7599-2022-16-1-78-88
Abstract
To create multifunctional robotic platforms for agricultural use, it is reasonable to use a modular principle that will allow installing various equipment depending on the tasks assigned to the robotic tool. Providing autonomous reconfiguration capabilities will reduce human interference and maintenance costs. (Research purpose) This work is aimed at developing a scalable device for interfacing functional modules with the agricultural robotic base platform, which can provide mechanical fixation, energy transfer and information exchange. (Materials and methods) This article analyzes the previous research into the solutions for interfacing modules in robotic complexes and points out their benefits and drawbacks. Based on the analysis and own research, the interface mechanism structure was developed to ensure the correct mutual position and fixation of the module to the base platform under the assumption of possible energy and information exchange. (Results and discussion) In the course of the work, the design ratios for the interface device were derived, making it possible to calculate the permissible linear displacements and permissible angular deviation of the mechanism interfacing elements. Based on the permissible linear deviations up to 10-13 millimeters and a permissible angular deviation of 20 degrees, the main dimensions of the device prototype were obtained. A prototype interface device was operationalized with the dimensional specifications of 200 millimeters in length, 130 millimeters in width, 58 millimeters in height. Several experiments with the device prototype were carried out based on various linear and angular deviations of the interfacing elements. (Conclusions) It was found out that successful interfacing occurs in 98 percent of cases subject to admissible calculated displacements. It was concluded that the proposed interface device will allow for the autonomous replacement of modules of multifunctional robotic platforms.
About the Authors
K. D. KrestovnikovRussian Federation
Konstantin D. Krestovnikov, junior researcher
St. Petersburg
A. A. Erashov
Russian Federation
Aleksei A. Erashov, junior researcher
St. Petersburg
Yu. G. Vasyunina
Russian Federation
Yuliya G. Vasyunina, software developer
St. Petersburg
A. I. Savel'ev
Russian Federation
Anton I. Savel'ev, senior researcher
St. Petersburg
References
1. Chen I.-M., Yim M. Modular Robots. Springer Handbook of Robotics. 2016. 531-542 (In English).
2. Yim M., Shirmohammadi B., Sastra J., Park M., Dugan M., Taylor C. J. Towards robotic self-reassembly after explosion. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007. 2767-2772 (In English).
3. Yim M., Shen W. M., Salemi B., Rus D., Moll M., Lipson H., Chirikjian G. S. Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics and Automation Magazine. 2007. N14(1). 43-52 (In English).
4. Cantelli L., Bonaccorso F., Longo D., Melita C. D., Schillaci G., Muscato G. A small versatile electrical robot for autonomous spraying in agriculture. AgriEngineering. 2019. N1(3) 391-402 (In English).
5. Tabile R.A., Godoy E.P., Pereira R.R., Tangerino G.T., Porto A.J., Inamasu R.Y. Projeto e desenvolvimento da arquitetura de um robô agrícola móvel. Engenharia Agrícola. 2011. N31(1). 130-142 (In Spanish).
6. Quaglia G., Visconte C., Scimmi L.S., Melchiorre M., Cavallone P., Pastorelli S. Robot arm and control architecture integration on a UGV for precision agriculture. Advances in Mechanism and Machine Science. 2019. 2339-2348 (In English).
7. Pecka A., Osadcuks V. Conceptual Design of Modular Multi Functional Agricultural Mobile Robot. Research for rural development. 2018. N1. 202-206 (In English).
8. Bawden O., Kulk J., Russell R., McCool C., English A., Dayoub F., Perez T. Robot for weed species plant-specific management. Journal of Field Robotics. 2017. N34(6). 1179-1199 (In English).
9. Grimstad L., From P.J. Software components of the Thorvald II modular robot. Modeling, Identification and Control. 2018. N3. 157-165 (In English).
10. Grimstad L., From P.J. Thorvald II – a Modular and Re-configurable Agricultural Robot. IFAC-PapersOnLine. 2017. N50(1). 4588-4593 (In English).
11. Grimstad L., From P.J. The Thorvald II agricultural robotic system. Robotics. 2017. N6(4). 24 (In English).
12. Lee H.-Y., Murray C.C. Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems. International Journal of Production Research. 2018. N57(18). 5821-5841 (In English).
13. Schulz T., Holthaus P., Amirabdollahian F., Koay K.L. Humans' perception of a robot moving using a slow in and slow out velocity profile. ACM/IEEE International Conference on Human-Robot Interaction. 2019. 594-595 (In English).
14. Chen Y., Leighton B., Zhu H., Ke X., Liu S., Zhao L. Submap-based indoor navigation system for the Fetch robot. IEEE Access. 2020. N8. 81479-81491 (In English).
15. Wise M., Ferguson M., King D., Diehr E., Dymesich D. Fetch and freight: Standard platforms for service robot applications. Workshop on autonomous mobile service robots. 2016 (In English).
16. Andreev V., Kim V. Control System and Design of the Motion Module of a Heterogeneous Modular Mobile Robot. Annals of DAAAM & Proceedings. 2016. N27. 0586-0594 (In English).
17. Yim M., Shirmohammadi B., Sastra J., Park M., Dugan M., Taylor C.J. Towards robotic self-reassembly after explosion. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007. 2767-2772 (In English).
18. Salemi B., Moll M., Shen W.M. SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006. 3636-3641 (In English).
19. Yim M., Roufas K., Duff D., Zhang Y., Eldershaw C., Homans S. Modular reconfigurable robots in space applications. Auton Robot. 2003. N14. 225-237 (In English).
20. Zhang T., Zhang W., Gupta M.M. An underactuated self-reconfigurable robot and the reconfiguration evolution. Mechanism and Machine Theory. 2018. N124. 248-258 (In English).
21. Liu Y., Wei R., Dong H., Zhu Y., Zhao J. A Designation of Modular Mobile Reconfigurable Platform System. Journal of Mechanics in Medicine and Biology. 2020. N20(09). 2040006 (In English).
22. Sproewitz A., Asadpour M., Bourquin Y., Ijspeert A.J. An active connection mechanism for modular self-reconfigurable robotic systems based on physical latching. IEEE International Conference on Robotics and Automation. 2008. 3508-3513 (In English).
23. Sproewitz A., Asadpour M., Billard A., Dillenbourg P., Ijspeert A. Roombots – modular robots for adaptive furniture. IROS Workshop on Self-Reconfigurable Robots, Systems and Applications. 2008 (In English).
24. Nielsen J., Lund H.H. Modular robotics as a tool for education and entertainment. Computers in Human Behavior. 2008. N24(2). 234-248 (In English).
25. Zykov V., Chan A., Lipson H. Molecubes: An open-source modular robotics kit. IROS Self-Reconfigurable Robotics Workshop. 2007. 3-6 (In English).
26. Zykov V., Phelps W., Lassabe N., Lipson H. Molecubes extended: Diversifying capabilities of open-source modular robotics. IROS Self-Reconfigurable Robotics Workshop. 2008. 22-26 (In English).
27. Zykov V., Mytilinaios E., Desnoyer M., Lipson H. Evolved and designed self-reproducing modular robotics. IEEE Transactions on robotics. 2007. N23(2). 308-319 (In English).
28. Romanishin J.W., Gilpin K., Rus D. M-Blocks: Momentum-Driven, Magnetic Modular Robots. Proceedings of the IEEE International Conference on Intelligent Robots and Systems. 2013. 4288-4295 (In English).
29. Lyder A., Stoy K., Garciá R. F. M., Larsen J. C., Hermansen P. On sub-modularization and morphological heterogeneity in modular robotics. Intelligent Autonomous Systems. 2012. 649-661 (In English).
30. Lyder A., Garcia R.F.M., Stoy K. Mechanical design of Odin, an extendable heterogeneous deformable modular robot. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2008. 883-888 (In English).
31. Parrott C., Dodd T.J., Groß R. HiGen: A high-speed genderless mechanical connection mechanism with single-sided disconnect for self-reconfigurable modular robots. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014. 3926-3932 (In English).
32. Jensen K., Nielsen S. H., Joergensen R. N., Boegild A., Jacobsen N. J., Joergensen O. J., Jaeger-Hansen C. L. A low cost, modular robotics tool carrier for precision agriculture research. Proceedings of the 11th International Conference on Precision Agriculture. 2012 (In English).
33. White P.J., Kopanski K., Lipson H. Stochastic self-reconfigurable cellular robotics. IEEE International Conference on Robotics and Automation Proceedings. 2004. N3. 2888-2893 (In English).
34. Andreev V.P., Pletenev P.F. Metod informatsionnogo vzaimodeystviya dlya sistem raspredelennogo upravleniya v robotakh s modul'noy arkhitekturoy [Method of information interaction for distributed control systems of robots with modular architecture]. Trudy SPIIRAN. 2018. N57(2). 134160 (In Russian).
35. Kosenko V.V., Sharov V.V., Tsench Yu.S. Glavnye konstruktory Volgogradskikh traktorov. K 90-letiyu STZ-VGTZ [Chief designers of Volgograd tractors. To the 90th anniversary of STZ-VGTZ]. Istoriya nauki i tekhniki. 2020. N8. С. 85-97 (In Russian).
Review
For citations:
Krestovnikov K.D., Erashov A.A., Vasyunina Yu.G., Savel'ev A.I. Development of Interface Device for Modular Agricultural Robotic Platform. Agricultural Machinery and Technologies. 2022;16(1):78-88. (In Russ.) https://doi.org/10.22314/2073-7599-2022-16-1-78-88