A Mathematical Model for Determining the Specific Structural Weight of a Tillage Implement
https://doi.org/10.22314/2073-7599-2022-16-1-27-33
Abstract
The authors have shown that the tillage specific constructive weight affects the working width and penetration ability. In order to increase the working width of the tillage implement, and therefore its performance and economic efficiency as well as its penetration ability, it is preferable to minimize the value of this indicator. It is taken into account that the implement specific structural weight will depend on the actual number of working tools and frame elements per unit of the working width. (Research purpose) The aim of the work is to develop a mathematical model to determine the minimum allowable and actual specific structural weight depending on the tillage implement operating conditions and its structural design and technological scheme. (Materials and methods) The research methodology is based on mathematical modeling, abstraction, analysis, synthesis, and principles of classical mechanics. (Results and discussion) The proposed mathematical model for determining the minimum allowable and actual specific structural weight was developed. The model takes into account the physical and mechanical characteristics of the cultivated soil, the number of working bodies and frame elements per unit of the tillage implement working width. It was found out that an increase in the working width makes it possible to reduce the implement actual specific structural weight, all other things being equal. It was proposed to use the mathematical model for designing tillage tools, carrying out force calculations and comparative assessment of metal consumption, depending on the installation and location of working bodies with different working widths. (Conclusions) It was found out that with the soil ultimate compressive strength of 100,000 pascal, the implement minimum allowable structural weight should be 334 kilograms per meter to ensure the tillage tool penetration to a given depth. Under the considered conditions, the implement actual specific structural weight will have a minimum value at the working width of 0.7 and 0.8 meters – 375 kilograms per meter and 335 kilograms per meter, respectively.
About the Authors
A. I. DerepaskınKazakhstan
Aleksey I. Derepaskın, Dr.Sc.(Eng.), chief researcher
Kostanay
А. N. Kuvaev
Kazakhstan
Anton N. Kuvaev, Ph.D. student (Eng.)
Kostanay
I. V. Tokarev
Kazakhstan
Ivan V. Tokarev, research associate
Kostanay
References
1. Khafizov K.A., Khafizov R.N. Energeticheskiy metod optimizatsii osnovnykh parametrov traktora [Energy method for the optimization of tractor main parameters]. Vestnik Kazanskogo agrarnogo universiteta. 2015. N1(35). 75-81 (In Russian).
2. Khafizov K.A., Khafizov R.N. Rezul’taty mnogofaktornogo eksperimenta po opredeleniyu zavisimosti maksimal’nogo davleniya koles traktora na pochvu ot parametrov traktora i fiziko-mekhanicheskikh svoystv pochvy. Analiz uravneniy [Results of multivariate experiment to determine the dependence of tractor wheels’ maximum pressure on soil on tractor’s parameters and soil physical and mechanical properties. Equation analysis]. Vestnik Kazanskogo agrarnogo universiteta. 2016. N4(42). 94-98 (In Russian).
3. Cardei P, Matache M.G., Nutescu C. Optimum working conditions for variable width ploughs. ResearchGate. 2017. August (In English).
4. Nurmiev A., Khafizov С. Optimization of main parameters of tractor working with soil-processing implement. Engineering for rural development. 2018. 161-167 (In English).
5. Kuvaev A., Derepaskin I., Tokarev I. Substantiation of the working width of the tillage implement. Acta universitatis agriculturae et silviculturae mendellianae brunensis. 2021. Vol. 69 (In English).
6. Yezekyan T., Benetti M., Armentano G., Trestini S., Sartori L., Marinello F. Definition of Reference Models for Power, Mass, Working Width, and Price for Tillage Implements. Agriculture. 2021. Vol. 11 (In English).
7. Sineokov G.N. Proektirovanie pochvoobrabatyvayushchikh mashin [Design of the tillage implement]. Moscow: Mashinostroenie. 1965. 310 (In Russian).
8. Blednykh V.V. Tekhniko-ekonomicheskiy analiz proizvoditel’nosti pakhotnykh agregatov [Technical and economic analysis of the tillage implement efficiency]. Trudy CHIMESKH. 1973. N72. 65-84 (In Russian).
9. Rakhimov R.S., Rakhimov I.R., Kasymov F.F., et al. Opredelenie metalloemkosti orudiy pri ikh proektirovanii [Determining the specific metal content when designing tools]. APK Rossii. 2015. N74. 110-117 (In Russian).
10. Derepaskin A.I., Komarov A.P. Obosnovanie skhem raspolozheniya rabochikh organov pochvoobrabatyvayushchikh orudiy po kriteriyam metalloemkosti i tyagovomu soprotivleniyu [Justification of schemes of position of the tillage tools of agricultural implements on the criteria of material capacity and traction resistance]. Tekhnika i oborudovanie dlya sela. 2021. N8. 10-13 (In Russian).
11. Derepaskin A.I., Polishchuk Yu.V., Dyadyuchenko A.F. Obosnovanie skhemy raspolozheniya rabochikh organov shirokozakhvatnogo ploskoreza k traktoru tyagovogo klassa 8 po kriteriyam materialoemkosti i tyagovomu soprotivleniyu [The rationale for the layout of working bodies of the wide-reach flat cutter for the tractor of traction class 8 by the criteria of material consumption and rolling resistance]. Sel’skokhozyaystvennye tekhnologii. 2019 N4 (In Russian).
12. Derepaskin A.I., Kuvaev A.N. Klassifikatsiya rabochikh organov dlya mekhanicheskoy obrabotki pochvy [Classification of working tools for mechanical soil tillage]. 3i: intellect, idea, innovation. 2020. N2. 73-81 (In Russian).
13. Baraev A.I. Pochvozashchitnoe zemledelie [Soil protection agriculture]. Moscow: Kolos. 1975. 301 (In Russian).
14. Ershov V.L., Avdeenko A.I., Kaloshin A.A. Adaptatsiya pochvozashchitnykh agrotekhnologiy v zemledelii lesostepnykh i stepnykh landshaftov Zapadnoy Sibiri [Optimization of Soil Protective Agricultural Technologies in Crop Farming of Forest-Steppe and Steppe Landscapes in Western Siberia]. Elektronnyy nauchno-metodicheskiy zhurnal Omskogo GAU. 2017. N2 (In Russian).
15. Blanco-Canqui H., Ruis J. S. No-tillage and soil physical environment. Geoderma. 2018. Vol. 326 (In English).
16. Peixoto D.S., Moreira de Silvia L., Batista de Melo L., et al. Occasional tillage in no-tillage systems: A global meta-analysis. Science of the total environment. 2020. Vol. 745 (In English).
17. Schneider F., Don A., Hennings I., et al. The effect of deep tillage on crop yield – What do we really know? Soil and tillage research. 2017. Vol. 174 (In English).
18. Derepaskin A.I., Polishchuk Yu.V., Kuvaev A.N., Tokarev I.V. Obosnovanie tekhnologicheskoy skhemy i parametrov rabochih organov dlya osnovnoy obrabotki uplotnennykh pochv [Rationale technological schemes and parametres of working organs for primary treatment compaction]. Mezhdunarodnaya agroinzheneriya. 2016. N3. 29-37 (In Russian).
19. Lobachevskiy Ya.P., Beylis V.M., Tsench Yu.S. Aspekty tsifrovizatsii sistemy tekhnologiy i mashin [Aspects of digitalization of the system of technologies and machines]. Elektrotekhnologii i elektrooborudovanie v APK. 2019. N3(36). 40-45 (In Russian).
20. Ahalaya B.Kh., Shogenov Yu.Kh., Starovoytov S.I., Tsench Yu.S., Shogenov A.Kh. Trekhsektsionnyy pochvoobrabatyvayushchiy agregat s universal’nymi smennymi rabochimi organami [Three-section tillage unit with universal replaceable working bodies]. Vestnik Kazanskogo gosudarstvennogo agrarnogo universiteta. 2019. Vol. 14. N3(54). 92-95 (In Russian).
21. Lobachevskiy Ya.P., Starovoytov S.I., Akhalaya B.Kh., Tsench Yu.S. Tsifrovye tekhnologii v pochvoobrabotke [Digital technologies in tillage]. Innovatsii v sel’skom khozyaystve. 2019. N1(30). 191-197 (In Russian).
Review
For citations:
Derepaskın A.I., Kuvaev А.N., Tokarev I.V. A Mathematical Model for Determining the Specific Structural Weight of a Tillage Implement. Agricultural Machinery and Technologies. 2022;16(1):27-33. (In Russ.) https://doi.org/10.22314/2073-7599-2022-16-1-27-33