Preview

Agricultural Machinery and Technologies

Advanced search

Study of an Exhaust Gas Heat Separation System for the Beet Harvester

https://doi.org/10.22314/2073-7599-2022-16-1-19-26

Abstract

It was noted that increased soil moisture worsens the quality of harvesting root crops due to a decrease in the completeness of separation. To increase the separating capacity of a slotted cleaner for root crops, it was proposed to improve the heating of the separating surface with hot exhaust gas. (Research purpose) To optimize the design and technological parameters of an exhaust gas heat separation system of the sugar beet harvester power plant. (Materials and methods) Federal Scientific Agroengineering Center VIM developed an exhaust gas heat separation system for harvesting root crops and potatoes in high moisture conditions using the heat of the harvester power plant exhaust gases. The cleaning quality of the separating system of a self-propelled sugar beet harvester was determined under the gradual engine load from 0 to 100 percent of the nominal rated power. The temperature of the exhaust gases was measured with the assumption of changes in the engine load and its effective power. (Results and discussion) The experiment revealed an increase in the completeness of the separation of a root crops heap from 96.0 to 98.8 percent at 26-32 percent soil moisture due to the separation system in the form of a cleaning star, which uses the heat of the engine exhaust gases. The established optimal values of the factors under consideration are as follows: the separating star rotation rate is 21.8 revolutions per minute, the distance between the separating star and the deflector is 128.4 millimeters. (Conclusions) It was determined that the high quality of the technological process of root crops harvesting in high soil moisture conditions ensuring a 97-percent separation efficiency is possible if optimize the separating device design and technological parameters and maintain the separating star rotation rate at 20-22 revolutions per minute and the distance between the separating star and the deflector within 120-140 millimeters. The authors noted the prospects of developing this system and the need for theoretical and experimental studies to improve the design and technological process of the harvester separating system.

About the Authors

A. S. Dorokhov
Federal Scientific Agroengineering Center VIM
Russian Federation

Alexey S. Dorokhov, Dr.Sc.(Eng), corresponding member of Russian Academy of Sciences, chief researcher

Moscow



А. G. Aksenov
Federal Scientific Agroengineering Center VIM
Russian Federation

Alexander G. Aksenov, Ph.D.(Eng.), leading researcher

Moscow



A. V. Sibirev
Federal Scientific Agroengineering Center VIM
Russian Federation

Alexey V. Sibirev, Dr.Sc.(Eng), senior researcher

Moscow



M. A. Mosyakov
Federal Scientific Agroengineering Center VIM
Russian Federation

Maksim A. Mosyakov, Ph.D.(Eng.), senior researcher

Moscow



N. V. Sazonov
Federal Scientific Agroengineering Center VIM
Russian Federation

Nikolay V. Sazonov, junior researcher

Moscow



References

1. . Protasov A.A. Funktsional'nyy podkhod k sozdaniyu luko­uborochnoy mashiny [Functional approach to onion harvester designing]. Vestnik Federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya Moskovskiy gosudarstvennyy agroinzhenernyy universitet im. V.P. Goryachkina. 2011. N2 (47). 37-43 (In Russian).

2. Kolpakov V.E., Shkorlakov R.V. Issledovaniya zavisimosti temperatury vypusknykh gazov ot moshchnostnykh rezhimov avtotraktornykh dizeley [Studies of the exhaust gases temperature dependence on the power modes of autotractor diesel engines]. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta. 2014. N35. 289-294 (In Russian).

3. Dorokhov A.S., Sibirev A.V., Aksenov A.G. Dynamic systems modeling using artificial neural networks for agricultural machines. INMATEH – Agricultural Engineering. 2019. 2(58). 63-75 (In English).

4. Sorokin A.A. Teoriya i raschet kartofeleuborochnykh ma­shin. Monografiya. [Theory and calculation of potato harvesters: Monograph]. Moscow; VIM. 2006. 159 (In Russian).

5. Izmaylov A.Yu., Lobachevskiy Ya.P., Dorokhov A.S., Sibirev A.V., Kryuchkov V.A., Sazonov N.V. Sovremennye tekhnologii i tekhnika dlya sel'skogo hozyaystva – tendentsii vystavki Agritechnika 2019 [Modern agriculture technologies and equipment – trends of an agritechnika 2019 exhibition]. Traktory i sel'khozmashiny. 2020. N6. 28-40 (In Russian).

6. Kostenko M.Yu., Kostenko N.A. Veroyatnostnaya otsenka separiruyushchey sposobnosti elevatora kartofeleuborochnoy mashiny [Probabilistic assessment of the potato harvester elevator’s separating capacity]. Mekhanizatsiya i elektrifikatsiya sel'skogo hozyaystva. 2009. N2. 4 (In Russian).

7. Krasnoshchekov N.V. Agroinzhenernaya strategiya: ot mekhanizatsii sel'skogo hozyaystva k ego intellektualizatsii [Agroengineering strategy: from mechanization of agriculture to its intellectualization]. Traktory i sel'khozmashiny. 2010. N8. 5-7 (In Russian).

8. Kamaletdinov R.R. Obektno-orientirovannoe imitatsionnoe modelirovanie v srede teorii informatsii (informatsionnoe modelirovanie) [Object-oriented imitating modeling in the environment of the information theory (information modeling)]. Izvestiya Mezhdunarodnoy akademii agrarnogo obrazovaniya. 2012. Vol. 1. N14. 186-194 (In Russian).

9. Reyngart E.S., Sorokin A.A., Ponomarev A.G. Unifitsirovannye kartofeleuborochnye mashiny novogo pokoleniya [New generation unified potato harvesters]. Traktory i sel'sko­khozyaystvennye mashiny. 2006. N10. 3-5 (In Russian).

10. Hevko R.B., Tkachenko I.G., Synii S.V. Development of design and investigation of operation processes of small-scale root crop and potato harvesters. INMATEH – Agricultural engineering. 2016. 49. 2. 53-60 (In English).

11. Dorokhov A.S., Aksenov A.G., Sibirev A.V., Mosyakov M.A., Sazonov N.V. Teoreticheskie predposylki povysheniya separiruyushchey sistemy mashiny dlya uborki korne­plo­dov teplovoy energiey sistemy otrabotavshikh gazov [Theoretical background of increasing the separating system of a root harvesting machine with thermal energy of the exhaust gas system]. Vestnik Kazanskogo GAU. 2021. N1(61). 71-77 (In Russian).

12. Ukhanov A.P., Ukhanov D.A., Adgamov I.F. Teoreticheskiy analiz energozatrat mashinno-traktornogo agregata pri rabote na dizel'nom smesevom toplive [Theoretical analysis of energy consumption of machine-tractor unit when running on diesel-mixed fuel]. Niva Povolzh'ya. 2015. N1(34). 66-71 (In Russian).

13. Beylis V.M., Tsench Yu.S., Korotchenya V.M., et al. Tendentsii razvitiya progressivnykh mashinnykh tekhnologiy i tekhniki v sel'skokhozyaystvennom proizvodstve [Trends in the development of advanced machine technologies and techniques in agricultural production].Vestnik VIESH. 2018. N4(33). 150-156 (In Russian).

14. Kalinin A.B. Teplinskiy I.Z., Kudryavtsev P.P. Otsenki parametrov pochvennogo sostoyaniya pri vypolnenii tekhnolo­gicheskikh protsessov vozdelyvaniya kartofelya po intensivnoy tekhnologii [Parameter estimation of soil state in the implementation of technological processes in the cultivation of potatoes on intensive technology]. Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta. 2015. N38. 288-293 (In Russian) .

15. Pakhomov V.I., Kaun V.D., Krasyukov K.V. Teoreticheskie osnovy sushki sel'skokhozyaystvennykh materialov [Theoretical foundations of drying agricultural materials]. Mekhanizatsiya i elektrifikatsiya sel'skogo hozyaystva. 2011. N8. 2-4 (In Russian).

16. Zykin E.S., Kurdyumov V.I., Subaeva A.K. Perspektivy razvitiya parka sel'skokhozyaystvennoy tekhniki v sovremennykh usloviyakh [Prospects of development of agricultural equipment in modern conditions]. Sovremennye problemy nauki i obrazovaniya. 2015. N1-1. 772 (In Russian).

17. Evtekhov D.V., Beznosyuk R.V., Kodirov S.T., et al. Issledovanie ekspluatatsionnykh pokazateley kartofeleuborochnykh mashin s modernizirovannymi rabochimi organami [Study of performance indicators of potato harvesting machines with modernized working bodies]. Vestnik Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta im. P.A. Kostycheva. 2021. N1(49). 112-119 (In Russian).

18. Ovchinnikov E.V., Fedotkin R.S., Uyutov S.Yu., Kryuchkov V.A. Kombinirovannaya silovaya ustanovka s uluchshennymi ekologicheskimi pokazatelyami [Combined power plant with improved environmental performance]. Ekologiya promyshlennogo proizvodstva. 2021. N2(114). 44-47 (In Russian).


Review

For citations:


Dorokhov A.S., Aksenov А.G., Sibirev A.V., Mosyakov M.A., Sazonov N.V. Study of an Exhaust Gas Heat Separation System for the Beet Harvester. Agricultural Machinery and Technologies. 2022;16(1):19-26. (In Russ.) https://doi.org/10.22314/2073-7599-2022-16-1-19-26

Views: 409


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)