Preview

Agricultural Machinery and Technologies

Advanced search

Technical Configurations of a Helicopter Type Unmanned Aerial System for Pesticide and Fertilizer Application

https://doi.org/10.22314/2073-7599-2021-15-3-63-72

Abstract

It was noted that when forming the configurations of an unmanned aerial system for pesticide and fertilizer application, it is necessary to take into account the interdependence of unmanned and ground-based aerial systems. (Research purpose) To develop the configurations of an unmanned aerial system for pesticide and fertilizer application. (Materials and methods) The authors used Methodological recommendations on the use of chemicals in the precision farming system (VIM), regulatory and technical documentation for unmanned aerial systems. (Results and discussion) The authors developed a flowchart of the algorithm for forming the configurations of a helicopter type unmanned aerial system for fertilizer and pesticide application, including the formation of both unmanned and ground-based aerial systems. The authors calculated the aerodynamic characteristics of an unmanned coaxial rotor aircraft with a take-off weight of 280 kilograms and a payload of 100 kilograms. A modular-designed sprayer was offered. The authors substantiated the structure of the ground-based aerial complex in the form of a mobile transporter-tanker with a basic transport platform, lifting and transporting and refueling modules, and a universal ground control panel for the pilot-operator. (Conclusions) The authors formed reasonable configurations of a helicopter type unmanned aerial system for pesticide and fertilizer differentiated application in the precision farming system. Aircraft performance limitations were identified for the application of fertilizers and pesticides by a helicopter type unmanned aerial vehicle: the payload of at least 100 kilograms, the operating altitude of 1.0-1.5 meters when bypassing the agricultural field topography and avoiding possible obstacles, the operating airspeed kept below 60 kilometers per hour, automatic take-off and landing on a limited area, autoflight at the speed of 60 kilometers per hour at a one meter altitude in a tacking mode. It was showed that the static ceiling margin, without taking the earth influence into account, with a 280-kilogram flight mass, is 1300 meters, which allows flying in mountainous areas, for example, for the treatment of vineyards with pesticides.

About the Authors

L. A. Marchenko
Federal Scientific Agroengineering Center VIM,
Russian Federation

Leonid A. Marchenko, Ph.D.(Eng.), leading researcher

Moscow



M. V. Myzin
JSC Russian Helicopters
Russian Federation

Mikhail V. Myzin, project manager

Moscow



I. V. Kuznetsov
JSC “Kamov”
Russian Federation

Ivan V. Kuznetsov, prospective projects technical supervisor

Lyubertsy



A. Yu. Spiridonov
Federal Scientific Agroengineering Center VIM
Russian Federation

Artem Yu. Spiridonov,  junior researcher

Moscow



References

1. Barkovskiy V.I., Skopets G.M., Stepanov V.D. Metodolo­giya formirovaniya tekhnicheskogo oblika eksportno-orientirovannykh aviatsionnykh kompleksov [Methodology for the formation of the technical configurations of export-oriented aviation complexes]. Moscow: Fizmatlit. 2008. 243 (In Russian).

2. Poltavskiy A.V., Maklakov V.V., Averkin A.E., Polokhov A.N., Borodulya V.M., Burba A.A., Semenov S.S., Sedykh Yu.I. Sistemnye printsipy sozdaniya i primeneniya mnogotselevykh kompleksov bespilotnykh letatel’nykh apparatov [System principles for creating and using multipurpose complexes of unmanned aerial vehicles]. Moscow: IPU RAN. 2010. 102 (In Russian).

3. Guseynov A.B. Metodika strukturno-parametricheskogo sinteza konstruktivno-komponovochnogo oblika bespilotnogo letatel’nogo apparata [Technique for the structural and parametric synthesis of the design and configurations of an unmanned aerial vehicle]. Trudy MAI. 2014. N49. 1-14 (In Russian).

4. Guseynov A.B., Makhovykh A.V. Metodika formirovaniya ratsional’nogo oblika bortovogo kompleksa radiolokatsionnoy zashchity bespilotnogo letatel’nogo apparata [The method of forming a rational aspect of the onboard complex of radar defense unmanned aerial vehicle]. Nauchnyy Vestnik MGTU GA. 2017. Vol. 20. N5. 98-106 (In Russian).

5. Austin R. Unmanned aircraft systems: UAVS design, development and deployment. Great Britain. Wiltshire. 2011. 365 (In English).

6. Valavanis K.P., George J. Handbook of Unmanned Aerial Vehicles. Netherlands. Springer. 2014. 22-30 (In English).

7. Duan H., Li P. Bio-inspired Computation in Unmanned Aerial Vehicles. Springer. 2014. 269 (In English).

8. Roskam J. Airplane Design, Part IV. DARcorporation. Lawrence. KS. 2007. 403 (In English).

9. Proektirovanie samoletov [Aircraft design]. pod red. S.M. Egera. Moscow: Mashinostroenie. 1983. 616 (In Russian).

10. Serebryanskiy S.A., Parnenkov A.E. Podkhod k formirovaniyu tekhnicheskogo oblika bespilotnogo vozdushnogo sudna [Approach to shaping the technical appearance of an unmanned aerial vehicle]. Vestnik YUrGU. Seriya «Mashinostroenie». 2019. Vol. 19. N3. 43-52 (In Russian).

11. Antsev V.G., Bykov V.A., Parnenkov A.E. Obosnovanie kriteriya effektivnosti pri formirovanii tekhnicheskogo oblika bespilotnogo vozdushnogo sudna vertoletnogo tipa [Justification of efficiency criterion in formation of technical appearance of a helicopter-type unmanned aircraft]. Voprosy radioelektroni­ki. 2019. N9. 63-67 (In Russian).

12. Pripadchev A.D., Mezhueva L.V., Sultanov N.Z. Kontseptual’nye osnovy proektirovaniya oblika letatel’nogo apparata [The conceptual bases aircraft figure desingning]. Fundamental’nye issledovaniya. 2013. N6. 561-564 (In Russian).

13. Bykov V.A., Parnenkov A.E. Formirovanie oblika bespilotnogo vozdushnogo sudna vertoletnogo tipa s uchetom posadki na slozhnodvizhushchuyusya platformu [Formation of appearance of helicopter-type unmanned airvehicle with consideration of landing on complex-moving platform]. Voprosy radioelektroniki. 2020. N3. 16-22 (In Russian).

14. Marchenko L.A., Artyushin A.A., Smironov I.G., Mochkova T.V., Spiridonov A.Yu., Kurbanov R.K. Tekhnologiya vneseniya pestitsidov i udobreniy bespilotnymi letatel’nymi apparatami v tsifrovom sel’skom khozyaystve [Technology of Pesticides and Fertilizers Application with Unmanned Aerial Vehicles in Digital Agriculture]. Sel’skokhozyaystvennye mashiny i tekhnologii. 2019. Vol. 13. N5. 38-45 (In Russian).

15. Marchenko L.A., Mochkova T.V., Kurbanov R.K., Krasnoborod’ko V.V. Osnovnye trebovaniya k bespilotnym letatel’nym apparatam dlya vneseniya udobreniy i pestitsidov [Basic requirements for unmanned aerial vehicles for fertilizer and pesticides]. Vestnik VIESH. 2018. N4(33). 107-112 (In Russian).

16. Marchenko L.A., Lichman G.I., Smironov I.G., Mochkova T.V., Kolesnikova V.A. Differentsirovannoe vnesenie udobreniy i pestitsidov s ispol’zovaniem bespilotnykh letatel’nykh apparatov [Variable rate application of fertilizers and pesticides using unmanned aerial vehicles]. Sel’skokhozyaystvennye mashiny i tekhnologii. 2017. N3. 17-23 (In Russian).

17. Marchenko L.A., Myzin M.V., Kuznetsov I.V., Mochkova T.V. Spiridonov A.Yu. Bespilotnoe vozdushnoe sudno vertoletnogo tipa dlya vneseniya pestitsidov i udobreniy [Unmanned helicopter type aircraft for the pesticides and fertilizers application]. Sel’skokhozyaystvennye mashiny i tekhnologii. 2020. Vol. 14. N1. 61-68 (In Russian).

18. Sheynin V.M. Kozlovskiy V.I. Vesovoe proektirovanie i effektivnost’ passazhirskikh samoletov [Weight design and efficiency of passenger aircraft.]. Vol. 1. Vesovoy raschet i vesovoe proektirovanie. Moscow: Mashinostroenie. 1977. 344 (In Russian).

19. Smirnov I.G., Marchenko L.A., Lichman G.I., Mochkova T.V., Spiridonov A.Yu. Bespilotnye letatel’nye apparaty dlya vneseniya pestitsidov i udobreniy [Unmanned aerial vehicles for pesticides and fertilizers application in precision farming system]. Sel’skokhozyaystvennye mashiny i tekhnologii. 2017. Vol. 11. N3. 17-23 (In Russian).

20. Tokarev Yu.P., Makeev M.R., Yumaev K.R. Postroenie kompleksa upravleniya bespilotnymi letatel’nymi apparatami s ispol’zovaniem standartnykh komponentov [The construction of a control complex for unmanned aerial vehicles using standard components]. Informatika, telekommunikatsionnoe upravlenie. 2010. N6(113). 56-59 (In Russian).


Review

For citations:


Marchenko L.A., Myzin M.V., Kuznetsov I.V., Spiridonov A.Yu. Technical Configurations of a Helicopter Type Unmanned Aerial System for Pesticide and Fertilizer Application. Agricultural Machinery and Technologies. 2021;15(3):63-72. (In Russ.) https://doi.org/10.22314/2073-7599-2021-15-3-63-72

Views: 656


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)