Engine Power Required When Using a Tractor with a Technology Module
https://doi.org/10.22314/2073-7599-2021-15-2-33-40
Abstract
A shortage of class 2 and class 3 tractors was observed in peasant farms. As a solution to this problem, it was proposed to develop a technological module that would increase the versatility of class 1.4 tractors by transferring them to a higher traction class. (Research purpose) The authors aimed to substantiate the nominal operating power of the engine for a tractor with a technological module. (Materials and methods) To calculate the required power, the authors proposed a method that takes into account the design features of the modular construction of a machine-tractor unit. (Results and discussion) The authors showed that for a modular power unit with a 6K6 wheel arrangement, it is necessary to consider a number of additional factors having an impact on the accuracy of the calculation: firstly, the tractor’s traction and coupling properties depend on the number of driving axles; secondly, the wheel slippage along individual axes is not the same and occurs due to a constructively conditioned kinematic discrepancy in their drive; thirdly, the three-axle transmission efficiency can be determined only as a total indicator of three transmission branches, that is, to drive the tractor front and rear wheels and, separately, to drive the wheels of the technological module. The authors compared the required engine power when using a tractor with ballast and that with a technological module. (Conclusions) It was determined that in order to achieve the maximum traction force of adhesion on the hook when moving to the next higher traction class, it is necessary that the tractor, that the technological module is joint to, has the energy saturation of 2.00-2.41 kilowatts per kilonewton, which corresponds to traction and energy concept tractors whose engine power cannot be realized through traction. It was found that the power saturation of the tractor with the technological module will be equal to 1.59-1.65 kilowatts per kilonewton, which corresponds to the tractor of the traction concept and allows realizing the built-in engine power through traction.
About the Authors
M. V. SidorovRussian Federation
Maksim V. Sidorov, Ph.D.(Eng.), associate professor
Kaluga
A. V. Lavrov
Russian Federation
Aleksandr V. Lavrov, Ph.D.(Eng.), leading researcher
Moscow
V. A. Voronin
Russian Federation
Virtor A. Voronin, post-graduate student
Bryansk
A. V. Sidorova
Russian Federation
Anastasiia V. Sidorova, post-graduate student
Kaluga
References
1. Godzhaev Z.A., Beylis V.M., Shevtsov V.G., Lavrov A.V. Normativy i prognozirovanie potrebnosti sel’skokhozyaystvennogo proizvodstva v tekhnike [Norms and forecast of the agricultural production need for machinery]. Elektrotekhnologii i elektrooborudovanie v APK. 2020. Vol. 67. N4 (41). 151-158 (In Russian).
2. Sidorov V.N., Voinash S.A., Ivanov A.A., Petrov S.A. Modular-Technological Scheme for Tractors of Traction Classes 1.4. IOP Conference Series: Earth and Environmental Science. 2020. Vol. 666. 042048 (In English).
3. Kut’kov G.M. Energonasyshchennost’ i klassifikatsiya traktorov [Energy saturation and classification of tractors]. Traktory i sel’skohozyaystvennye mashiny. 2009. N5. 11-14 (In Russian).
4. Kut’kov G.M. Razvitie tekhnicheskoy kontseptsii traktora [The development of the technical concept of the tractor]. Traktory i sel’hozmashiny. 2019. N1. 27-35 (In Russian).
5. Kut’kov G.M. Potentsial’naya proizvoditel’nost’ traktora [Potential productivity of the tractor]. Traktory i sel’hozmashiny. 2017. N5. 48-52 (In Russian).
6. Shutenko V.V., Perevozchikova N.V., Khort D.O. Sravnenie effektivnosti ispol’zovaniya ballastnykh gruzov i transportno-tekhnologicheskikh moduley dlya povysheniya tyagovo-stsepnykh svoystv traktora [Comparison of the efficiency when using ballast weights and transport and technological modules to improve the traction and coupling properties of the tractor]. Innovatsii v sel’skom hozyaystve. 2019. N3(32). 162-168 (In Russian).
7. Kut’kov G.M., Gribov I.V., Perevozchikova N.V. Ballastirovanie sel’skohozyaystvennykh traktorov [Agricultural tractor ballasting]. Traktory i sel’khozmashiny. 2017. N9. 52-60 (In Russian).
8. Lavrov A.V., Sidorov M.V., Voronin V.A. Tekhnologicheskiy modul’ dlya krest’yanskikh fermerskikh hozyaystv [Technology module for peasant farms]. Sel’skiy mekhanizator. 2021. N3. 5-7 (In Russian).
9. Sidorov M.V., Lavrov A.V., Voronin V.A. Modul’no-tekhnologicheskaya skhema dlya traktorov tyagovogo klassa 1,4 [Modular technological scheme for tractors of traction classes 1.4]. Elektrotekhnologii i elektrooborudovanie v APK. 2019. N4(37). 57-62 (In Russian).
10. Lavrov A.V., Shevtsov V.G., Zubina V.A., Rusanov A.V. Obosnovanie trebovaniy na mobil’noe energeticheskoe sredstvo klassa 0,6-0,9 [Substantiation of the requirements for a mobile energy device of class 0.6-0.9]. Tekhnicheskiy servis mashin. 2020. N3(140). 57-66 (In Russian).
11. Lavrov A., Smirnov I., Litvinov M. Justification of the construction of a self-propelled selection seeder with an intelligent seeding system. MATEC Web of Conferences. 2018. Vol. 224. 05011 (In English).
12. Lavrov A., Shevtsov V., Sidorov M. Algorithm of adaptation results tractors tractive tests based on systems OECD and ISO. E3S Web of Conferences. 2019. Vol. 126. 00035 (In English).
13. Sidorov V.N., Loktik O.V., Sidorov M.V. Povyshenie proizvoditel’nosti mashinno-traktornogo agregata primeneniem promezhutochnogo energeticheskogo modulya [Increasing the productivity of the machine-tractor unit by using an intermediate energy module]. Konstruirovanie, ispol’zovanie i nadezhnost’ mashin sel’skohozyaystvennogo naznacheniya. 2002. N1(1). 112115 (In Russian).
14. Sidorov V.N., Sidorov M.V., Kut’kov G.M. Raschet moshchnosti dvigatelya i vesa traktora tyagovo-energeticheskoy kontseptsii [Calculation of engine power and weight of a towing power concept tractor]. Elektronnyy zhurnal: Nauka, tekhnika i obrazovanie. 2016. N2(6). 37-46 (In Russian).
15. Gribov I.V., Perevozchikova N.V. Moshchnost’ – osnovnoy pokazatel’ dlya traktora tyagovo-energeticheskoy kontseptsii [Power as the main indicator for a tractor of tractive force-and-output concept]. Tekhnika i tekhnologii APK. 2017. N5. 18-21 (In Russian).
16. Kut’kov G.M. Issledovaniya modul’nogo energotekhnologicheskogo sredstva [Research into modular power-processing means]. Traktory i sel’skohozyaystvennye mashiny. 1989. N12. 3-9. (In Russian)
17. Solov’ev R.Yu., Cheranev S.V., Karyakin S.B., Kolomeychenko A.V., Gribov I.V. Aktual’nost’ razrabotki vysokotekhnologichnykh traktorov tyagovykh klassov 0,6-2 [The relevance of developing of high-tech tractors of traction classes 0.6-2].Tekhnika i oborudovanie dlya sela. 2019. N11(269). 14-17 (In Russian).
18. Kut’kov G.M. Traktory i avtomobili. Teoriya i tekhnologicheskie svoystva [Tractors and cars. Theory and technological properties]. Moscow: KolosS. 2004. 505 (In Russian).
19. Berezhnov N.N., Averichev L.V. Obosnovanie energonasyshchennosti kolesnogo traktora po dannym kontrol’nogo dinamometrirovaniya agregata [Justification of power/ weight ratio of a wheel tractor on the basis of data of control dynamometer test of the aggregate]. Dostizheniya nauki i tekhniki APK. 2018. Vol. 32. N12. 76-81 (In Russian).
20. Berezhnov N. Traction-speed properties of wheeled mobile power equipment for agricultural purposes. IOP Conference Series: Earth and Environmental Science. 12th International Scientific Conference on Agricultural Machinery Industry, INTERAGROMASH. 2019. 012038 (In English).
Review
For citations:
Sidorov M.V., Lavrov A.V., Voronin V.A., Sidorova A.V. Engine Power Required When Using a Tractor with a Technology Module. Agricultural Machinery and Technologies. 2021;15(2):33-40. (In Russ.) https://doi.org/10.22314/2073-7599-2021-15-2-33-40