Digital Lighting Technologies to Control Galleria Mellonella Behavior
https://doi.org/10.22314/2073-7599-2021-15-1-78-83
Abstract
The authors found out that the greater wax moth (Galleria mellonella) harmed bee colonies by destroying up to 30 percent of honey in a beehive. They studied the results of experiments on controlling its behavior using a developed automated microprocessor system that maintained optical radiation sources duration.
(Research purpose) To develop light technologies using a microprocessor-based automated system that allows controlling Galleria mellonella behavior by realizing attractive optical radiation characteristics.
(Materials and methods) Galleria mellonella behavior was controlled by an automated system that the authors worked out for maintaining the required duration of the experiment and optical radiation parameters. The ATmega328 microcontroller was chosen as the main element of the developed microprocessor automated system. The authors created a program for it using visual programming FLProg version 5.3.0.
(Results and discussion) The authors found that, regardless of the experiment duration, Galleria mellonella butterflies prefered radiation with 400 nanometers wavelength.
(Conclusions) The authors determined that radiation with 400 nanometers wavelength and 10 minutes duration was attractive. They showed the ability to control Galleria mellonella behavior, luring butterflies to a specific place in the beehive with comfortable spectrum parameters. An automated system for controlling the greater wax moth butterfly behavior was developed on ATmega328 microcontroller by implementing attractive optical radiation characteristics.
About the Authors
N. P. Kondrat'evaRussian Federation
Nadezhda P. Kondrat'eva, Dr.Sc.(Eng.), head of the department
Izhevsk
D. V. Buzmakov
Russian Federation
Daniil V. Buzmakov, high-research teacher
Izhevsk
I. R. Il'yasov
Russian Federation
Ilnur R. Il'yasov, high-research teacher
Izhevsk
R. G. Bol'shin
Russian Federation
Rоman G. Bol'shin, Ph.D.(Eng), professor
Izhevsk
M. G. Krasnolutskaya
Russian Federation
Mariya G. Krasnolutskaya, Ph.D.(Eng), professor
Izhevsk
References
1. Neumyvakin I.F. Propolis. Mify i real’nost’ [Propolis. Myths and Reality]. Moscow – Saint-Petersburg: Dilya. 2005. 128 (In Russian).
2. Shikova Yu.V., Mannapov A.G., Zaripov R.A. Produkty pchelovodstva v profilaktike sezonnykh vspyshek zabolevaemostyam grippom i ORVI [Beekeeping products in the prevention of seasonal outbreaks of influenza and viral respiratory infections]. Pchelovodstvo. 2020. N5. 50-51 (In Russian).
3. Chernyshev V.B. Sel’skokhozyaystvennaya entomologiya (Ekologicheskie osnovy) [Agricultural Entomology (Ecological Foundations)]. Moscow: Triumf. 2012. 232 (In Russian).
4. Helenius J. Spatial scales in ecological pest management (EPM): importance of regional crop rotation. Entomological Research in Organic Agriculture. 1997. Vol. 15. N1-4. 163-170 (In English).
5. Sazhnev A.S., Rodionova E.Yu. Zhestkokrylye (Insecta: Coleoptera), sobrannye v svetovye lovushki so sverkhyarkimi svetodiodami na territorii Krasnodara [Coleoptera (Insecta: Coleoptera) collected in light traps with superbright LEDs on the territory of Krasnodar]. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya. 2019. Vol. 19. N2. 188-195 (In Russian).
6. Kukanov A.S., Samkov M.N., Zel’din Ya.N. Lov nasekomykh na svet pod vodoy [Catching insects to light under water]. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Biologiya i ekologiya. 2006. N2. 94-95 (In Russian).
7. Sulaymonov B.A., Ovchinnikov A.S., Sapaev B., Bocharnikov V.S. Sapaev I.B., Fomin S.D., Erkinov Z.Sh. Monitoring faz razvitiya nasekomykh – sel’khozvrediteley posredstvom eksperimental’nykh svetolovushek dlya sovershenstvovaniya elektrofizicheskikh metodov bor’by [Monitoring of the development phases of insects – agricultural pests by means of experimental light traps to improve electrophysical methods of control]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vysshee professional’noe obrazovanie. 2019. N3(55). 307 313 (In Russian).
8. Pokivaylov A.A., Khayrov Kh.S., Nazarova Sh.D., Rashidova Z.F Nekotorye rezul’taty sbora saranchovykh (Orthoptera, Acrididae) na UF-izluchenie svetovykh lovushek v Yugo-Zapadnom Tadzhikistane. [ome results of collecting locusts (Orthoptera, Acrididae) for UV radiation of light traps in South-West Tajikistan.] Soobshchenie 2. Izvestiya Akademii nauk Respubliki Tadzhikistan. Otdelenie biologicheskikh i meditsinskikh nauk. 2018. N1(200). 7-12 (In Russian).
9. Surinskiy D.O., Savchuk I.V., Basumatorova E.A. Preimushchestva integrirovannogo sposoba zashchity rasteniy ot nasekomykh – vrediteley [The advantages of an integrated method of protecting plants from insects – pests]. Konstruirovanie, ispol’zovanie i nadezhnost’ mashin sel’skokhozyaystvennogo naznacheniya. 2019. N1(18). 39-45 (In Russian).
10. Savchuk I.V., Surinskiy D.O., Rusakov I.A. Matematicheskaya model’ rascheta konstruktivnykh parametrov videosvetolovushki [A mathematical model for calculating the design parameters of a video light trap]. Vestnik KrasGAU. 2017. N4(127). 81-88 (In Russian).
11. Korb S.K. Automatic autonomous light traps and their usage for the quantitative accounting on example of hawkmoths of Kyrgyzstan (Lepidoptera: Sphingidae). Nature Conservation Research. Zapovednaya nauka. 2018. Vol. 3. N3. 80-85 (In English).
12. Klochko R.T., Luganskiy S.N., Blinov A.V. Bor’ba s bol’shoy voskovoy mol’yu na pasekakh [Fighting with the greater wax moth in apiaries]. Pchelovodstvo. 2019. N3. 34-36 (In Russian).
13. Bolshin R.G., Kondrateva N.P., Krasnolutskaya M.G. Irradiation set with UV diodes and microprocessor system of automatic dose control. Light & Engineering. 2019. Vol. 27. N6. 127 132 (In English).
14. Kondrat’eva N.P., Buzmakov D.V., Bol’shin R.G., Krasnolutskaya M.G., Il’yasov I.R., Osokina A.S. Rezul’taty opytov po primeneniyu svetovykh energosberegayushchikh elektrotekhnologiy dlya otlova nasekomykh [The experiments results on the use of light energy-saving electrical technologies for trapping insects]. Vestnik NGIEI. 2019. N12(103). 25-36 (In Russian).
15. Kondrateva N.P., Filatov D.A., Terentiev P.V. Dependence of current har-monics of greenhouse irradiators on supply voltage. Light & Engineering. 2020. Vol. 28. N2. 85-88 (In English).
Review
For citations:
Kondrat'eva N.P., Buzmakov D.V., Il'yasov I.R., Bol'shin R.G., Krasnolutskaya M.G. Digital Lighting Technologies to Control Galleria Mellonella Behavior. Agricultural Machinery and Technologies. 2021;15(1):78-83. (In Russ.) https://doi.org/10.22314/2073-7599-2021-15-1-78-83