Oxide Emissions Reduction from Combustion Control in a Diesel Engine
https://doi.org/10.22314/2073-7599-2021-15-1-48-56
Abstract
The authors showed that the European Union norms for the toxicity of exhaust gases (Euro 1 – Euro 5) contributed to the reduction of main harmful components emissions by several times. In foreign countries, Stage and Tier regulations applied to tractor equipment, which also limited the content of toxic components at the legislative level.
(Research purpose) To reduce the content of nitrogen oxides in exhaust gases by more efficient regulation of the fuel charge distribution in the gas-diesel engine cylinder, changes in the concentration of diesel and gas fuel in certain zones, as well as the use of exhaust gas recirculation.
(Materials and methods) The authors analyzed the results of modeling the formation of nitrogen oxides by controlling the workflow in the gas-diesel modification of the diesel engine. In the calculations, the geometric parameters of the D-120 engine, operating at 2000 revolutions per minute, with a filling of 0.6-0.9 volume, were used. The average excess air ratio for the charge was 1.2-3.0, and the excess air ratios for the gas-air mixtures did not exceed 1.2-2.5.
(Results and discussion) Using the computational model, the authors estimated the parameters at different pressures at the engine inlet within 0.05-0.09 megapascals, as well as with an increase in the residual gas coefficient in the range of 5-15 percent with a decrease in the concentration of nitrogen oxides from 2500 to 1100 parts per million. Experiments showed that when the power changed from 100 to 20 percent, the nitrogen oxides concentration decreased from 1940 to 800 parts per million.
(Conclusions) The authors confirmed the adequacy of the calculation model. They determined that a 40-50 percent reduction in the nitrogen oxide concentration in exhaust gases was achieved with various layering schemes in the combustion chamber. They found that the standards for carbon monoxide, hydrocarbons and nitrogen oxides would require mixed engine regulation. It was proved that recirculation of 15 percent of exhaust gases could reduce nitrogen oxide emissions by another 50 percent.
About the Authors
V. L. ChumakovRussian Federation
Valery L. Chumakov, Ph.D.(Eng.), professor
Moscow
S. N. Devyanin
Russian Federation
Sergey N. Devyanin, Dr.Sc.(Eng.), professor
Moscow
References
1. Nagornov S.A., Meshcheryakova Yu.V., Meshcheryakov A.G. Eksperimental'noe issledovanie raboty dizel'nogo dvigatelya na smesevom toplive [Experimental study of the operation of a diesel engine running on mixed fuel]. Traktory i sel'khozmashiny. 2016. N1. 9-11 (In Russian).
2. Davydova S.A., Starostin I.A. Klass ekologichnosti sovremennykh sel'skokhozyaistvennykh traktorov [Environmental class of modern agricultural tractors]. AgroEkoInfo. 2020. N2(40). 19 (In Russian).
3. Kul'chitskiy A.R. Toksichnost' avtomobil'nykh i traktornykh dvigateley [Toxicity of automobile and tractor engines]. Vladimir: Vladimirskii gosudarstvennyi universitet. 2000. 256 (In Russian).
4. Saikin A.M. Normativnye problemy pri razrabotke sredstv ekologicheskoy i aktivnoy bezopasnosti avtotransportnykh sredstv v otnoshenii vozdushnoy sredy [Regulatory problems in the development of means of ecological and active safety of vehicles in relation to the air environment]. Avtomobili, dvigateli i ikh komponenty. 2008. Iss. 239. 181-188 (In Russian).
5. Zel'dovich Ya.B., Sadovnikov P.Ya., Frank-Kamenetskiy D.A. Okislenie azota pri gorenii [Oxidation of nitrogen during combustion]. M.-L.: AN SSSR. 1947. 145 (In Russian).
6. Voinov A.N. Sgoranie v bystrokhodnykh porshnevykh dvigatelyakh [Combustion in high-speed piston engines]. M.: Mashinostroenie. 1977. 276 (In Russian).
7. Bizhaev A.V., Devyanin S.N. Rezul'taty eksperimental'nykh issledovaniy dobavok vody v kameru sgoraniya dizel'nogo dvigatelya [Results of experimental studies of water additives in the combustion chamber of a diesel engine]. Sel'skokhozyaistvennye mashiny i tekhnologii. 2016. Vol. 10. N2. 36-39 (In Russian).
8. Fenimore C.P. Formation of nitric oxide from fuel nitrogen in ethylene flames. Combustion and flame. 1972. Vol. 19. 289‑296.
9. Shaykin A.P., Galiev I.R. Osobennosti goreniya metano-vodorodnykh smesey v porshnevykh energoustanovkakh i dvigatelyakh [Features of combustion of methane-hydrogen mixtures in piston power plants and engines]. Bezopasnost' truda v promyshlennosti. 2020. N1. 21-25 (In Russian).
10. Ivanov V.V., Kuz'mina O.V. Modelirovanie obrazovaniya okisi azota NO v kineticheskikh mekhanizmakh Ya.B. Zel'dovicha [Modeling the formation of nitric oxide NO in kinetic mechanisms of Ya.B. Zeldovich]. Trudy Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Tekhnologicheskaya. 2017. N5. 235-239 (In Russian).
11. Lopatin O.P. Zonnaya model' protsessa obrazovaniya oksidov azota v tsilindre gazodizelya [Zone model of the formation of nitrogen oxides in a gas diesel cylinder]. Sovremennaya nauka: aktual'nye problemy i puti ikh resheniya. 2015. N4(17). 36-39 (In Russian).
12. Maksimov A.L. Raschetnaya model' deistvitel'nogo tsikla dvigatelya vnutrennego sgoraniya [Calculation model of the actual cycle of an internal combustion engine]. Trudy Moskovskogo avtomobil'no-dorozhnogo instituta. 1976. 74-81 (In Russian).
13. Bizhaev A.V., Chumakov V.L., Putan A.A. Raschetnaya model' osnovnykh parametrov rabochego tsikla dizelya s ispol'zovaniem razlichnykh tipov topliv [Calculation model of the main parameters of the diesel engine operating cycle using different types of fuels]. Doklady TSKhA. 2020. Iss. 292. 244-247 (In Russian).
14. Oshchepkov P.P., Bizhaev A.V., Zaev I.A., Smirnov S.V., Adegbenro S.A. Issledovanie dizel'nogo topliva s dobavkami pal'movogo masla [Research of diesel fuel with palm oil additives]. Transport na al'ternativnom toplive. 2018. N5(65). 56-62 (In Russian).
15. Gertsyk S.I., Belyakov I.V. Otsenka soderzhaniya oksidov azota v produktakh goreniya gazoobraznykh topliv [Estimation of the content of nitrogen oxides in combustion products of gaseous fuels]. Elektrometallurgiya. 2020. N4. 34-40 (In Russian).
16. Bizhaev A.V., Devyanin S.N., Soo S., Fomin V.M., Ibragim A.S.Kh., Khodyakov A.A. Ispol'zovanie arakhisovogo masla v kachestve prisadki k dizel'nomu toplivu [The use of peanut oil as an additive to diesel fuel]. Sel'skokhozyaistvennye mashiny i tekhnologii. 2018. Vol. 12. N6. 45-50 (In Russian).
17. Devyanin S.N., Bigaev A.V., Markov V.A. Influence of Method of Adding Water to Combustible Mixture on Diesel Engine Performance. IOP Conf. Series: Materials Science and Engineering. 2018. 327. 022024 (In English).
18. Plotnikov S.A., Kantor P.Ya., Kozlov I.S., Vtyurina M.N. Otsenka ekologicheskikh svoystv rapsovykh masel dlya primeneniya v kachestve motornogo topliva sel'skokhozyaistvennogo traktora [Assessment of the ecological properties of rapeseed oils for use as a motor fuel for an agricultural tractor]. Inzhenernye tekhnologii i sistemy. 2020. Vol. 30. N1. 43-59 (In Russian).
19. Bizhaev A.V., Simeon A.A. Primenenie pal'movogo masla v kachestve prisadki k toplivu traktornykh dizel'nykh dvigateley [Palm oil use as additive to fuel for tractor diesels]. Sel'skokhozyaistvennye mashiny i tekhnologii. 2017. N6. 41-46 (In Russian).
20. Chumakov V.L., Bizhaev A.V. Snizhenie vybrosov oksidov azota s otrabotavshimi gazami gazodizelya [Reducing emissions of nitrogen oxides with exhaust gases of gas diesel]. Chteniya akademika V.N. Boltinskogo. 2019. 118-122 (In Russian).
21. Dunin A.Yu., Shatrov M.G., Golubkov L.N., Yakovenko A.L. Organizatsiya stupenchatoy kharakteristiki vpryskivaniya topliva upravleniem elektricheskim impul'som, postupayushchim na elektromagnit forsunki akkumulyatornoy toplivnoy sistemy [Organization of the stepwise characteristics of fuel injection by controlling the electric impulse entering the electromagnet of the nozzle of the accumulator fuel system]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie. 2020. N1(718). 32-42 (In Russian).
22. Khalid El'-Sheikh, Ryabov G.A., Khamid M.D., Bukharkina T.V., Khusein M.A. Obrazovanie i podavlenie vybrosov NOx i N2O pri szhiganii topliv v srede kisloroda s retsirkulyatsiey CO2 (obzor) [Formation and suppression of NOx and N2O emissions during combustion of fuels in oxygen with CO2 recirculation (review)]. Teploenergetika. 2020. N1. 5-14 (In Russian).
Review
For citations:
Chumakov V.L., Devyanin S.N. Oxide Emissions Reduction from Combustion Control in a Diesel Engine. Agricultural Machinery and Technologies. 2021;15(1):48-56. (In Russ.) https://doi.org/10.22314/2073-7599-2021-15-1-48-56