Preview

Agricultural Machinery and Technologies

Advanced search

Rationale for the Choice of a Positioning System for Mobile Agricultural Robot Movement Controlling

https://doi.org/10.22314/2073-7599-2020-14-4-63-70

Abstract

A correctly selected positioning system for controlling the mobile robotic means movement ensures high positioning accuracy of the robotic platform in the garden, allows to automate precise operations in the garden and systematize route planning algorithms.

(Research purpose) To substantiate the rational choice of a positioning system for controlling the mobile robotic device movement.

(Materials and methods) The author formulated requirements for the positioning system to perform precise operations in the garden: mechanized collection of fruits and berries, diff erentiated application of fertilizers and chemical plant protection products. The main ones were: the positioning error was no more than 5 centimetres, the stability of information transfer to the server for building traffi c maps, the movement of a robotic device along a given trajectory, equipping beacons with a mobile power source with a capacity of at least 800 milliampere-hour, information exchange between the beacon and the built-in robotic means with a microprocessor controller according to the RS-485 standard, the signal coverage area was at least 100 square meter.

(Results and discussion) The six most relevant positioning systems of the following manufacturers were described: RealTrac, Rusoft CKT, Neomatic, ISBC, Avtosensor, Marvelmind. The author compared their technical and operational parameters: operating frequencies, range, data transfer interface, location accuracy and cost of ready-made kits. He showed that Marvelmind provided uninterrupted operation at frequencies of 433 and 915 megahertz with a positioning error of no more than 2 centimetres. The tests were carried out on a small robotic vehicle with the following characteristics: maximum transport speed – 30 kilometre per hour, operating weight – 500 kilograms, length 2 metres, width – 1.2 metres, height – 1.6 metres.

(Conclusions) The author substantiated the choice of the most suitable and aff ordable Marvelmind positioning system and experimentally confi rmed the positioning accuracy declared by the manufacturer. When driving in a loop-free and looped turn, the positioning accuracy did not exceed 1.5 centimetres, which met the agrotechnical requirements for mechanized collection of fruits and berries, for diff erentiated application of fertilizers and chemical plant protection products

About the Author

A. V. Teterev
Federal Scientific Agroengineering Center VIM
Russian Federation

Artem V. Teterev, junior researcher

Moscow



References

1. Bogurenko P.A., Burlakov M.E. Obzor metodov lokal'nogo pozitsionirovaniya obektov v WI-FI setyah [Review of methods for local positioning of objects in WI-FI networks]. Vestnik PNIPU. 2017. N23. 146-158 (In Russian).

2. Ovchinnikov S. Sistemy pozitsionirovaniya i monitoringa [Positioning and monitoring systems]. Tekhnologii i sredstva svyazi. 2014. N2. 18–22 (In Russian).

3. Miniahmetov R.M., Rogov A.A., Cymbler M.L. Obzor algoritmov lokal'nogo pozitsionirovaniya dlya mobil'nykh ustroystv [Review of local positioning algorithms for mobile devices]. Vestnik Yuzhno-Ural'skogo Gosudarstvennogo universiteta. 2013. N2-2. 83-95 (In Russian).

4. Sokolin D.D. Nauchnyy rukovoditel' –Parot'kin N.Yu. O reshenii zadachi lokal'nogo pozitsionirovaniya obektov v pomeshcheniyah [On the solution of the problem of local positioning of objects in premises]. Aktual'nye problemy aviacii i kosmonavtiki. 2017. Vol. 2. N13. 239-241 (In Russian).

5. Yang Q., Zheng S., Liu M., Zhang Y. Research on Wi-Fi indoor positioning in a smart exhibition hall based on received signal strength indication. Eurasip Journal on Wireless Communications and Networking. 2019. N.1. 275 (In English).

6. Assur O.S., Filaretov G.F. Razrabotka kompleksnogo metoda pozitsionirovaniya obektov po dannym besprovodnykh setey Wi-Fi i ustroystv BLE (Bluetooth Low Energy) [Development of an integrated method for positioning objects according to data from wireless Wi-Fi networks and BLE (Bluetooth Low Energy) devices]. Izvestiya instituta inzhenernoy fiziki. 2015. N2(36). 2-10 (In Russian).

7. Dmitriev V. Tekhnologiya peredachi informatsii s ispol'zovaniem sverkhshirokopolosnykh signalov (UWB) [Technology of information transmission using ultra-wideband signals (UWB)]. Komponenty i tekhnologii. 2004. N1. (36). 64-67 (In Russian).

8. Harlamov M.I., Goncharovaskiy O.V. Navigatsiya avtonomnogo robota s pomoshch'yu sistemy pozitsionirovaniya dlya pomeshcheniy [Navigation of an autonomous robot using a positioning system for rooms]. Avtomatizirovannye sistemy upravleniya i informatsionnye tekhnologii. 2018. 110-112 (In Russian).

9. Ladd A.M., Bekris K.E., Rudys A., et al. Robotics-based Location Sensing Using Wireless Ethernet. Proceedings of the 8th Annual International Conference on Mobile Computing and Networking. New York. New York City. USA: ACM. 2002. 227-238 (In English).

10. Gimaranov R.R., Kirichek R.V., Shpakov M.N. Tekhnologiya mezhmashinnogo vzaimodeystviya LORA [LORA machine-to-machine interaction technology]. Informatsionnye tekhnologii i telekommunikatsii. 2015. Vol. 3. N2. 62-73 (In Russian).

11. Finkenzeller K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. New York: John Wiley & Sons, 2003. 6 (In English).

12. Pantyuhin A.R., Belyaev A.S. Sistema opredeleniya mestopolozheniya obektov vnutri pomeshcheniy [A system for determining the location of objects indoors]. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal. 2017. N10-3(64). 81-84 (In Russian).

13. Kolmakov Yu.A., Perevezentsev I.N. Vliyanie korrelyatsii svobodnyh chlenov ryada trilateratsii na otsenku tochnosti izmerennykh storon [The influence of the correlation of free members of the trilateration series on the assessment of the accuracy of the measured sides]. Vestnik Ul'yanovskogo gosudarstvennogo tekhnicheskogo universiteta. 2010. N2(50). 70-72 (In Russian).

14. Sokolov Yu.G., Timoshenko N.A., Danil'chenko P.M. K voprosu sostavleniya uslovnykh uravneniy v geodezicheskih setyah iz treugol'nikov s izmerennymi storonami [On the issue of drawing up conditional equations in geodetic networks of triangles with measured sides]. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2007. N28. 34-40 (In Russian).

15. Andolenko V.I., Klyushin E.B. Issledovanie tochnosti radial'nykh simmetrichnykh setey trilateratsii [Research of the accuracy of radial symmetric trilateration networks]. Izvestiya vysshikh uchebnykh zavedeniy. Geodeziya i aerofotosemka. 1990. N2. 3-12 (In Russian).

16. Avakyan V.V. Prikladnaya geodeziya: Tekhnologii inzhenerno-geodezicheskikh rabot [Applied geodesy: technologies of engineering and geodetic works]. Moscow: 2016. 37-40 (In Russian).

17. Harlamov M.I., Goncharovskiy O.V. Navigatsiya avtonomnogo mobil'nogo robota s pomoshch'yu sistemy pozitscionirovaniya Marvelmind [Navigation of an autonomous mobile robot using the Marvelmind positioning system]. Innovatsionnye tekhnologii: teoriya, instrumenty, praktika. Perm': 2017. Vol. 1. 56-60 (In Russian)


Review

For citations:


Teterev A.V. Rationale for the Choice of a Positioning System for Mobile Agricultural Robot Movement Controlling. Agricultural Machinery and Technologies. 2020;14(4):63-70. (In Russ.) https://doi.org/10.22314/2073-7599-2020-14-4-63-70

Views: 938


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)