Preview

Agricultural Machinery and Technologies

Advanced search

Research of Tractor Power Unit with Electric Drive Parameters

https://doi.org/10.22314/2073-7599-2020-14-4-33-42

Abstract

The author showed that it was possible to reduce the exhaust gases toxicity and increase tractors effi ciency using an electric power unit to implement traction. The effi ciency of modern electric motors was at its peak of 96 percent, compared to 45 for a diesel engine. He emphasized that this parameter for modern sources of electrical energy was 85-90 percent, which opened up opportunities for the implementation of an electric tractor.

(Research purpose) To present the general concept of an electric drive power unit for a tractor of a small traction class and to evaluate its parameters as a fi rst approximation.

(Materials and methods) For the tractor’s electric drive lithium-ion batteries were chosen as a source of electrical energy, showing the best characteristics of energy intensity – 432-864 kilojoule per kilogram with a unit cost of 4200-17400 rubles per kilogram. During the analyses of the power unit drive types, a D-120 diesel engine with a power of 20 kilowatt, a DC electric motor and an asynchronous motor with similar parameters were studied. The VTZ-2032 tractor with a nominal tractive eff ort of 600 Newtons when working on stubble was taken as the basis for the calculation.

(Results and discussion) The author determined the best indicators of the electric drive by the power characteristics fullness in the gears with a decrease in unit costs per kWh from 24 to 15-16 rubles.

(Conclusions) The most effi cient engine was determined – a brushless DC electric motor. The author calculated that the specifi c cost of its energy was 1.5-1.8 times less than that of a diesel engine, and amounted to 15-27 rubles per kilowatt-hour with a maximum effi ciency of 95 percent. It was found that lithium-ion batteries would be the optimal solution for powering the electric drive. They were distinguished by a high specifi c energy consumption – 432-864 kilojoule per kilogram – and a low price per energy unit, amounting to 5-45 rubles per kilojoule.

About the Author

A. V. Bizhaev
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Anton V. Bizhaev, Ph.D.(Eng.), senior lecturer

Moscow



References

1. Markov B.A., Devyanin C.N., Bykovskaya L.I., Markova I.G. et al. Biogaz – perspektivnoe toplivo dlya dizeley [Biogas is a promising fuel for diesel engines]. Gruzovik. 2018. N5. 29-39 (In Russian).

2. Bizhaev A.V. Issledovanie metodov dobavok vody k toplivu v porshnevoy dvigatel' vnutrennego sgoraniya [Investigation of methods for adding water to fuel in a piston internal combustion engine]. Sel'skokhozyaystvennye mashiny i tekhnologii. 2015. Vol. 9. N1. 16-19 (In Russian).

3. Zaginaylov V.I., Andreev S.A. Istoriya razvitiya, sostoyanie i perspektivy primeneniya elektromobil'noy tekhniki v polevodstve [The history of development, the state and prospects of the use of electromobile equipment in field cultivation]. Vestnik federal'nogo gosudarstvennogo obrazovatel'nogo uchrezhdeniya vysshego professional'nogo obrazovaniya «Moskovskiy gosudarstvennyy agroinzhenernyy universitet imeni V.P. Goryachkina». 2017. N6(82). 15-22 (In Russian).

4. Ivanov S.A., Bobrovnikov D.E. Ispol'zovanie nakopiteley energii v tyagovo-transportnykh sredstvakh [The use of energy storage devices in traction vehicles]. Moscow: Triada. 2018. 124 (In Russian).

5. Isakov P.P., Ivanchenko P.N., Egorov A.D. Elektromekhanicheskie transmissii gusenichnykh traktorov [Electromechanical transmissions of tracked tractors]. Leningrad: Mashinostroenie. 1981. 302 (In Russian).

6. Maystrenko N.A., Uvarov V.P. Potrebitel'skie orientiry effektivnogo ispol'zovaniya perspektivnykh transportno-tekhnologicheskikh sredstv [Consumer guidelines for the effective use of promising transport and technological means]. Vestnik MGAU imeni V.P. Goryachkina. 2016. N1. 14-15 (In Russian).

7. Zeraoulia M., Benbouzid M.E.H., and Diallo D. Electric motor drive selection issues for HEV propulsionsystems: A comparative study. IEEE Transactions on Vehicular Technology. 2006. N55(6). 756-1764 (In English).

8. Burress T.A., Campbell S.L., Coomer C.L., Ayers C.W. Evaluation of the 2010 toyota prius hybrid synergy drive system. Oak ridge national laboratory. – U.S. Department of Energy Vehicle Technologies. March 2011. 79 (In English).

9. Stroganov V.I., Kozlovskiy V.N. Modelirovanie sistem elektromobiley i avtomobiley s kombinirovannoy silovoy ustanovkoy v protsessakh proektirovaniya i proizvodstva: Monografiya. [Modeling of systems of electric vehicles and vehicles with a combined power plant in the design and production processes: Monograph]. Moscow: MADI. 2014. 264 (In Russian).

10. Ivanov A.M., Ivanov S.A. Kombinirovannye energoustanovki s IKE – osnova effektivnogo ispol'zovaniya toplivno-energeticheskikh resursov XXI veka [Combined power plants with IKE – the basis for the effective use of fuel and energy resources of the XXI century]. Elektrotekhnika. 2003. N12. 2-6 (In Russian).

11. Skundin A.M. Litiy-ionnye akkumulyatory: sovremennoe sostoyanie, problemy i perspektivy [Lithium-ion batteries: current state, problems and prospects]. Elektrokhimicheskaya energetika. 2011. Vol. 1. 5-15 (In Russian).

12. Despotuli A., Andreeva A. Superkondensatory dlya elektroniki (chast' 1) [Supercapacitors for electronics (part 1)]. Sovremennaya elektronika. 2006. N5. 10-14 (In Russian).

13. Tarascon J.-M., Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2011. Vol. 414. 359-367 (In English).

14. Ivanov D.A., Velikoretskiy A.A., Nekrasov A.S., Papkin I.A. Lithium-ion batteries with forced air cooling: simulation and laboratory tests. International Journal of Engineering and Advanced Technology. 2019. Vol. 13. N1. 5552-5558 (In English).

15. Bizhaev A.V. Problemy vybora tipa privoda silovogo agregata traktora na elektricheskoy tyage [Problems of choosing the tractor power unit drive type on electric traction]. Chteniya akademika V. N. Boltinskogo: Sbornik statey. 2020. 247-252 (In Russian).

16. Kut'kov G.M., Soloveychik A.A., Sidorov M. V. Teoriya i raschet polnoprivodnogo traktora [Theory and calculation of an all-wheel drive tractor]. Sel'skokhozyaystvennye mashiny i tekhnologii. 2014. Vol. 8. N2. 8-14 (In Russian).

17. Yakushev A.Ya., Nazirkhonov T.M., Vikulov I.P., Markov K.V. Opredelenie osnovnykh parametrov asinkhronnogo tyagovogo elektrodvigatelya [Determination of the main parameters of an asynchronous traction electric motor]. Izvestiya Peterburgskogo universiteta putey soobshcheniya. 2019. Vol. 16. Iss. 4. 592-601 (In Russian).

18. Fattakhov K.M., Fattakhov R.K. Raschet i postroenie puskovykh kharakteristik asinkhronnogo dvigatelya po katalozhnym dannym [Calculation and construction of starting characteristics of an induction motor according to catalog data]. Neftegazovoe delo. 2012. N3. 25-31 (In Russian).

19. Chernyak Yu.V., Gatchenko V.A., Karashchuk S.V. Model' tyagovogo privoda elektrovoza postoyannogo toka s shirotno-impul'snym regulirovaniem napryazheniya tyagovykh elektrodvigateley [Model of a traction drive of a direct current electric locomotive with pulse-width regulation of the voltage of traction electric motors]. Vestnik Belorusskogo gosudarstvennogo universiteta transporta: Nauka i transport. 2018. N1(36). 28-29 (In Russian).

20. Shukharev S.A. Modelirovanie raboty dvigatelya postoyannogo toka [Modeling the operation of a DC motor]. Vestnik instituta tyagi i podvizhnogo sostava. 2018. N14. 7-12 (In Russian).

21. Bizhaev A.V., Chumakov V.L., Putan A.A. Raschetnaya model' osnovnykh parametrov rabochego tsikla dizelya s ispol'zovaniem razlichnykh tipov topliv [Computational model of the main parameters of the diesel engine operating cycle using different types of fuels]. Doklady TSKHA: Sbornik statey. 2020. Iss. 292. Ch. I. 244-247 (In Russian).

22. Deryushev V.V., Vinogradova T.A. Analiz skorostnykh kharakteristik sovremennykh dvigateley [Analysis of the speed characteristics of modern engines]. Mir transporta i tekhnologicheskikh mashin. 2019. N1(64). 3-10 (In Russian).

23. Chau K., Chan C., and Liu C. Overview of permanent-magnet brushless drives for electric and hy-brid vehicles. IEEE Transactions On Industrial Electronics. 2008. 55(6). 2246-2257 (In English).

24. Al-Mashakbeh, A.S.O. (2009). Proportional integral and derivative control of brushless DC motor. European Journal of Scientific Research. 35(2). 198-203 (In English).

25. Hanselman Duane C. Brushless permanent magnet motor design / Duane Hanselman. 2nd ed. 2003. 392 (In English).

26. Ovchinnikov I.E. Ventil'nye elektricheskie dvigateli i privod na ikh osnove [Valve electric motors and a drive based on them]. Saint Petersburg: KORONA-Vek. 2016. 336 (In Russian).

27. Dolgih A., Martemyanov V., Borikov V. Dependence of the torque-rotor position characteristic from the tape winding current. Przeglad elektrotechniczny. 2019. Vol. 95. N9. 71-75 (In English).


Review

For citations:


Bizhaev A.V. Research of Tractor Power Unit with Electric Drive Parameters. Agricultural Machinery and Technologies. 2020;14(4):33-42. (In Russ.) https://doi.org/10.22314/2073-7599-2020-14-4-33-42

Views: 1131


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)