Preview

Agricultural Machinery and Technologies

Advanced search

Application of Vegetation Indexes to Assess the Condition of Crops

https://doi.org/10.22314/2073-7599-2020-14-4-4-11

Abstract

Monitoring of the state of agricultural crops and forecasting the crops development begin with aerial photography using a unmanned aerial vehicles and a multispectral camera. Vegetation indexes are selected empirically and calculated as a result of operations with values of diff erent spectral wavelengths. When assessing the state of crops, especially in breeding, it is necessary to determine the limiting factors for the use of vegetation indexes.

(Research purpose) To analyze, evaluate and select vegetation indexes for conducting operational, high-quality and comprehensive monitoring of the state of crops and the formation of optimal management decisions.

(Materials and Methods) The authors studied the results of scientifi c research in the fi eld of remote sensing technology using unmanned aerial vehicles and multispectral cameras, as well as the experience of using vegetation indexes to assess the condition of crops in the precision farming system. The limiting factors for the vegetation indexes research were determined: a limited number of monochrome cameras in popular multispectral cameras; key indicators for monitoring crops required by agronomists. After processing aerial photographs from an unmanned aerial vehicle, a high-precision orthophotomap, a digital fi eld model, and maps of vegetation indexes were created.

(Results and discussion) More than 150 vegetation indexes were found. Not all of them were created through observation and experimentation. The authors considered broadband vegetation indexes to assess the status of crops in the fi elds. They analyzed the vegetation indexes of soybean and winter wheat crops in the main phases of vegetation.

(Conclusions) The authors found that each vegetative index had its own specifi c scope, limiting factors and was used both separately and in combination with other indexes. When calculating the vegetation indexes for practical use, it was recommended to be guided by the technical characteristics of multispectral cameras and took into account the index use eff ectiveness at various vegetation stages.

About the Authors

R. K. Kurbanov
Federal Scientific Agroengineering Center VIM
Russian Federation

Rashid K. Kurbanov, Ph.D.(Eng.), leading researcher

Moscow



N. I. Zakharova
Federal Scientific Agroengineering Center VIM
Russian Federation

Natalya I. Zakharova, graduate student

Moscow



References

1. Adao T, Hruska J., Padua L., Bessa J., Peres E., Morais R., Sousa J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sensing. 2017. Vol.9(11). N1110. DOI:10.3390/ rs9111110 (In English).

2. Tsouros D.C., Bibi S., Sarigiannidis P.G. A Review on UAVBased Applications for Precision Agriculture. Information. 2019. Vol.10(11). N349. DOI:10.3390/info10110349 (In English).

3. Mulla D.J. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, Special Issue: Sensing Technologies for Sustainable Agriculture. 2014. Vol. 114. N4. 358-371. DOI:10.1016/j. biosystemseng.2012.08.009 (In English).

4. Poblete-Echeverr´ıa C., Fuentes S., Ortega-Farias S., GonzalezTalice J., Yuri J. A. Digital cover photography for estimating Leaf area index (LAI) in apple trees using a variable light extinction coefficient. Sensors (Switzerland). 2015. Vol.15. N.2. 2860–2872. DOI:10.3390/s150202860 (In English).

5. Kurbanov R.K., Zakharova N.I., Zakharova O.M., Gorshkov D.M. Otsenka sostoyaniya posevov ozimoy pshenitsy posle perezimovki s pomoshch’yu BPLA [Assessment of Winter Wheat after Wintering with the Use of UAVs]. Innovatsii v sel’skom khozyaystve. 2019. N3(32). 133-139 (In Russian).

6. Xu J., Gu H.B., Meng Q.M., Cheng J.H., Liu Y.H., Jiang P.A., Sheng J.D., Deng J., Bai X. Spatial pattern analysis of Haloxylon ammodendron using UAV imagery - A case study in the Gurbantunggut Desert. International Journal of Applied Earth Observation and Geoinformation. 2019. Vol. 83. UNSP101891. DOI:10.1016/j.jag.2019.06.001 (In English).

7. Dash J.P., Pearse G.D., Watt M.S. UAV Multispectral Imagery Can Complement Satellite Data for Monitoring Forest Health. Remote Sensing. 2018. Vol. 10(8). N1216. DOI:10.3390/rs10081216 (In English).

8. Luo W., Xu X.L., Liu W., Liu M.X., Li Z.W., Peng T., Xu C.H., Zhang Y.H., Zhang R.F. UAV based soil moisture remote sensing in a karst mountainous catchment . Catena. 2019. Vol.174. 478-489. DOI:10.1016/j.catena.2018.11.017 (In English).

9. Iost F.H., Heldens W.B., Kong Z.D., de Lange E.S. Drones: Innovative Technology for Use in Precision Pest Management. Journal of Economic Entomology. 2020. Vol.113(1). 1-25. DOI:10.1093/jee/toz268 (In English).

10. Zaman-Allah M., Vergara O., Araus J.L., Tarekegne A., Magorokosho C., Zarco-Tejada P.J., Hornero A., Alba A.H., Das B., Craufurd P., Olsen M., Prasanna B.M., Cairns J. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods. 2015. Vol. 11. N35. DOI:10.1186/ s13007-015-0078-2 (In English).

11. Xue J.R., Su B.F. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors. 2017. N1353691. DOI:10.1155/2017/1353691 (In English).

12. Artyushin A.A., Kurbanov R.K., Marchenko L.A., Zakharo va O.M. Vybor tiporazmernogo ryada bespilotnykh letatel’nykh apparatov i poleznoy nagruzki dlya monitoringa sel’skokhozyaystvennykh poley [The Choice of a Standard Series of Unmanned Aerial Vehicles and Payload for Monitoring Agricultural Fields]. Elektrotekhnologii i elektrooborudovanie v APK. 2019. N4(37). 36-43 (In Russian).

13. Kurbanov R.K., Zakharova O.M., Zakharova N.I., Gorshkov D.M. Programmnoe obespechenie dlya monitoringa i kontrolya pokazateley selektsionnykh protsessov posevov [Software for Monitoring and Control of Indicators of Selection Processes of Crops]. Innovatsii v sel’skom khozyaystve. 2019. N3(32). 122-132 (In Russian).

14. Guan SL, Fukami K., Matsunaka H., Okami M., Tanaka R., Nakano H., Sakai T., Nakano K., Ohdan H., Takahashi K. Assessing Correlation of High-Resolution NDVI with Fertilizer Application Level and Yield of Rice and Wheat Crops using Small UAVs. Remote Sensing. 2019. Vol. 2. N112. DOI:10.3390/ rs11020112 (In English).

15. Sidel'nik N.Yа., Pushkin A.A., Kovalevskiy S.V. Kartirovanie povrezhdennyh lesnyh nasazhdenij i ob"ektov lesohozyajstvennyh meropriyatij s ispol'zovaniem materialov kosmicheskoj s"emki i GIS-tekhnologij [Mapping of Damaged Forest Stands and Objects of Forestry Measures Using Satellite Imagery and GIS-Technologies]. Trudy BGTU. 2018. Vol.1. N1. 5-12 (In Russian).

16. Jordan C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology. 1969. Vol.50. N.4. 663-666. DOI:10.2307/1936256 (In English).

17. Hashimoto N., Saito Y., Maki M., Homma K. Simulation of Reflectance and Vegetation Indices for Unmanned Aerial Vehicle (UAV) Monitoring of Paddy Fields. Remote Sensing. 2019. Vol. 11(18). N2119. DOI:10.3390/rs11182119 (In English).

18. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, NASA. 1973. SP-351(I). 309-317 (In English).

19. Hassan M.A., Yang M.J., Rasheed A., Yang G.J., Reynolds M., Xia X.C., Xiao Y.G., He Z.H. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Science. 2019. Vol. 282(SI). 95-103. DOI:10.1016/j.plantsci.2018.10.022 (In English).

20. Fiodоrtsev R.V., Silie Cuenca A.R., Kozhevnikov D.A., Medina V.M., Delgado R. Application of Satellite Image Processing Methods for Hydrocarbon Field Search. Devices and Methods of Measurements. 2019. Vol. 10(4). 373–381. DOI:10.21122/2220-9506-2019-10-4-373-381 (In English).

21. Qi, J., Chehbouni A., Huete A., Kerr Y., Sorooshian S. A Modified Soil Adjusted Vegetation Index. Remote Sensing of Environment. 1994. Vol.48. 119-126 (In English).

22. Cammarano D., Fitzgerald G., Basso B., O'Leary G., Chen D., Grace P., Costanza F. Use of the Canopy Chlorophyl Content Index (CCCI) for Remote Estimation of Wheat Nitrogen Content in Rainfed Environments. Agronomy Journal. 2011. N103. 1597- 1603. DOI:10.2134/agronj2011.0124 (In English).

23. Lu N., Wang W.H., Zhang Q.F., Li D., Yao X., Tian Y.C., Zhu Y., Cao W.X., Baret R., Liu S.Y., Cheng T. Estimation of Nitrogen Nutrition Status in Winter Wheat from Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Frontiers in Plant Science. 2019. Vol. 10. N1601. DOI:10.3389/ fpls.2019.01601 (In English).

24. Vincini M., Frazzi E., D’Alessio P. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture. 2008. Vol. 9. 303-319. DOI:10.1007/s11119-008-9075-z (In English).

25. Boegh E., Soegaard H., Broge N., Hasager C., Jensen N., Schelde K., Thomsen A. Airborne Multi-spectral Data for Quantifying Leaf Area Index, Nitrogen Concentration and Photosynthetic Efficiency in Agriculture. Remote Sensing of Environment. 2002. N81(2-3). 179-193 (In English).

26. Boiarskii B., Hasegawa H. Comparison of NDVI and NDRE Indices to Detect Differences in Vegetation and Chlorophyll Content. Journal of Mechanics of Continua and Mathematical Sciences. 2019. SI(4). 20-29. DOI:10.26782/jmcms.spl.4/2019.11.00003 (In English).

27. Lu N., Wang W.H., Zhang Q.F., Li D., Yao X., Tian Y.C., Zhu Y., Cao W.X., Baret R., Liu S.Y., Cheng T. Estimation of Nitrogen Nutrition Status in Winter Wheat from Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Frontiers in Plant Science. 2019. Vol.10. N1601. DOI:10.3389/ fpls.2019.01601 (In English).


Review

For citations:


Kurbanov R.K., Zakharova N.I. Application of Vegetation Indexes to Assess the Condition of Crops. Agricultural Machinery and Technologies. 2020;14(4):4-11. https://doi.org/10.22314/2073-7599-2020-14-4-4-11

Views: 947


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)