Preview

Agricultural Machinery and Technologies

Advanced search

EFFECT OF LIGHT SPECTRUM ON CROPS GROWTH

Abstract

Productivity increase is one of priority problems of an agrarian complex in Russia. In many regions of the country cultivation of the majority of vegetables in an open ground is complicated or it is impossible because of severe climatic conditions. Plan cultivation in greenhouses, special aeroponic installations, phytothrones partially solves this problem. Production of various cultures suitable for food or as sowing material requires a complex of conditions, namely: optimum temperature, humidity and such the most important factor as illumination. Small intensity or shortage of light of a certain wavelength influence negatively on a morphogenesis of the grown-up cultures. Red and blue optical spectrums with lengths of waves of 640-660 nanometers and 430-460 nanometers respectively are most effective for growth of plants. Red highlighting promotes a phase of germination of wheat and increases by 2.5 times an indicator of a 1st leaf emergence. Influence of red and blue light on productivity of potato mini-tubers is experimentally defined: LED lamps in the mode of 660+450 nanometers can replace power-intensive sodium ones because values of weight of potato tubers at different lighting were close, having made 176.1 and 183.6 g respectively. At Brassica chinensis cultivation LED lamps can replace expensive sodium ones too: protein content made 17.4 mg per g at LED illumination and 16.4 mg per g in case of sodium lamps, and a share of soluble sugars from the total amount of sugars equals 100 and 50 percent respectively. At the illumination level of 350-400 mcM per 1 sq. m and a 1 second lamps on the basis of red and blue light-emitting diodes on density of a stream of photons in general provide adequate conditions of lighting for cultivation of many crops.

About the Authors

Yu. V. Tertyshnaya
All-Russia Research Institute of Mechanization for Agriculture; Emanuel Institute of Biochemical Physics
Russian Federation


N. S. Levina
All-Russia Research Institute of Mechanization for Agriculture
Russian Federation


References

1. URL: http://files.schoolcollection.edu.ru/dlrstore/ad932ea91c224702b3f46b31de89e260/[BI6ZD_704]_[IL_03]k.jpg

2. URL: http://bcoreanda.com/Images/Articles/Spectrum.jpg

3. Тихомиров А.А., Шарупич В.П., Лисовский Г.М. Светокультура растений: биофизические и биотехнологические основы. Новосибирск: СО РАН, 2000. 213 с

4. Goggin D.E., Steadman K.J. Blue and green are frequently seen: responses of seeds to shortand midwavelength light. Seed Science Research. 2012; 22: 27-35

5. Василенко В.Ф., Кузнецов Е.Д. Физиологические и экологические аспекты использования химической и световой регуляции роста растений // Вестник сельскохозяйственной науки. 1990. N7. С. 63-68

6. Шибряева Л.С., Тертышная Ю.В., Пальмина Д.Д., Левина Н.С. Биодеградируемые полимеры как материалы для высева семян зерновых культур // Сельскохозяйственные машины и технологии. 2015. N 6. С. 14-18

7. Möglich A., Moffat K. Engineered photoreceptors as novel optogenetic tools. Photochemical & photobiological sciences. 2010; 9: 1286-1300

8. Sahebjamei H., Abdolmaleki P., Ghanati F. Effects of Magnetic Field on the Antioxidant Enzyme Activities of SuspensionCultured Tobacco Cells. Bioelectromagnetics. 2007; 24: 42-47

9. Мартиросян Ю.Ц., Мартиросян В.В., Зернов В.Н. Новые технологии в производстве оздоровленного семенного картофеля // Аграрный вопрос. 2012. N5. С. 18 -19

10. Измайлов А.Ю., Гришин А.А., Гришин А.П. Аэропонный модуль для фитотронов // Сельскохозяйственные машины и технологии. 2013. N5. С. 20-22

11. Гришин А.П. Приложения принципов синергетики для моделирования процесса орошения в фитотроне // Сельскохозяйственные машины и технологии. 2011. N5. С. 20-23

12. URL: http://www.aqa.ru/assets/images/docs201008/photosintez2.png

13. Pfeiffer A., Kunkel T., Hiltbrunner A., Neuhaus G., Wolf I., Speth V., Adam E., Nagy F., Schafer E. A cellfree system for lightdependent nuclear import of phytochrome. Plant Journal. 2009; 57: 680-689

14. Muneer S., Kim E.J., Park J.S., Lee J.H. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International journal of molecular sciences. 2014; 15: 4657-4670

15. Тихомиров А.А., Лисовский Г.М., Сидько Ф.Я. Спектральный состав света и продуктивность растений. Новосибирск: Наука, 1991. 168 с

16. URL:http://files.studfiles.ru/2706/271/html_7rgXS8r7hG.zNUg/htmlconvdNlqrdL_html_m19574cb5.jpg

17. Мартиросян Ю.Ц., Полякова М.Н., Диловарова Т.А., Кособрюхов А.А. Фотосинтез и продуктивность растений картофеля в условиях различного спектрального облучения // Сельскохозяйственная биология. 2013. N1. С. 107-112

18. Pardo G.P., Aguilar C.H., Martínez F.R., Canseco M.M. Effects of light emitting diode high intensity on growth of lettuce (Lactuca sativa L.) and broccoli (Brassica oleracea L.) seedlings. Annual Research & Review in Biology. 2014; 19: 2983-2994

19. Аверчева О.В., Беркович Ю.А., Ерохин А.Н., Жигалова Т.В., Погосян С.И., Смолянина С.О. Особенности роста и фотосинтеза растений китайской капусты при выращивании под светодиодными светильниками // Физиология растений. 2009. Т. 56. N1. С. 17-26


Review

For citations:


Tertyshnaya Yu.V., Levina N.S. EFFECT OF LIGHT SPECTRUM ON CROPS GROWTH. Agricultural Machinery and Technologies. 2016;(5):24-29. (In Russ.)

Views: 1705


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7599 (Print)